Skip to main content

Translating Experimental Stroke Research into the Clinical Arena

  • Conference paper
Maturation Phenomenon in Cerebral Ischemia IV
  • 71 Accesses

Summary

Over the past 15 years significant progress has been made in our understanding of the pathophysiology of experimental cerebral ischemia. Using examples primarily from our Stanford experience, I review the development of several neuroprotective strategies, including the use of NMDA antagonists and mild hypothermia as well as the application of these agents in the operating room and in clinical trials for stroke. The usefulness of evoked potential monitoring for the detection of early and reversible cerebral ischemia in the laboratory was quickly integrated into the clinical setting within the operating room. The clinical problem of intraoperative interrupted vs. non-interrupted temporary arterial occlusion was investigated experimentally in the laboratory. Advances in experimental neuro- imaging were applied to clinical decision making. The success of thrombolytic treatment for acute stroke patients is discussed. Finally, the use of gene transfer therapy for treating cerebral ischemia will be covered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albers GW (1999) Expanding the window for thrombolytic therapy in acute stroke: The potential role of acute MRI for patient selection. Stroke 30: 2230 – 2237

    Article  PubMed  CAS  Google Scholar 

  2. Albers GW, Lansberg MG, Norbash AM, Tong DC, O’Brien MW, Woolfenden AR, Marks MP, Moseley ME (2000) Yield of diffusion-weighted MRI for detection of potentially relevant findings in stroke patients. Neurology 54: 1562 – 1567

    PubMed  CAS  Google Scholar 

  3. Beaulieu C, DeCrespigny A, Tong D, Moseley M, Albers G, Marks M (1999) Longitudinal MRI study of perfusion and diffusion in stroke: evolution of lesion volume and correlation with clinical outcome. Ann Neurol 46: 568 – 578

    Article  PubMed  CAS  Google Scholar 

  4. Boast CA, Gerhardt SC, Pastor G, Lehmann J, Etienne PE, Liebman JM (1988) The N-methyl- D-aspartate antagonists CGS 19755 and CPP reduce ischemic brain damage in gerbils. Brain Res 442: 345 – 348

    Article  PubMed  CAS  Google Scholar 

  5. Boysen G, Pessin M (1998) Thrombolytic Therapy. In: Ginsberg MD, Bougousslavsky J (eds) Cerebrovascular disease: pathophysiology, diagnosis and management. Blackwell, Maiden, Mass, pp 1887 – 1900

    Google Scholar 

  6. Broderick J, Brott T, Kothari R, Miller R, Khoury J, Pancioli A, Gebel J, Mills D, Minneci L, Shikula R (1998) The Greater Cincinnati/North Kentucky Stroke Study: preliminary first ever and total incidence rates of stroke among blacks. Stroke 29: 415 – 421

    Article  PubMed  CAS  Google Scholar 

  7. Buchan A, Pulsinelli WA (1990) Hypothermia but not the iV-methyl-D-aspartate antagonist MK-801 attenuates neuronal damage in gerbils subjected to transient global ischemia. J Neurosci 10: 311 – 316

    PubMed  CAS  Google Scholar 

  8. Busto R, Dietrich WD, Globus MY-T, Valdes I, Scheinberg P, Ginsberg MD (1987) Small differences in intraischemic brain temperature critically determine the extent of ischemic neuronal injury. J Cereb Blood Flow Metab 7: 729 – 738

    Article  PubMed  CAS  Google Scholar 

  9. Busto R, Ginsberg MD (1998) The influence of altered brain temperature in cerebral ischemia. In: Ginsberg MD, Bogousslavsky J (eds) Cerebrovascular Disease: Pathophysiology, Diagnosis, and Management. Blackwell Science, Maiden, Mass, pp 287 – 307

    Google Scholar 

  10. Chang SD, Lopez JR, Steinberg GK (1999) The usefulness of electrophysiologic monitoring during resection of central nervous system vascular malformations. J Stroke Cerebrovasc Dis 8: 412 – 422

    Article  PubMed  Google Scholar 

  11. Choi DW (1987) Dextrorphan and dextromethorphan attenuate glutamate neurotoxicity. Brain Res 403: 333 – 336

    Article  PubMed  CAS  Google Scholar 

  12. Choi DW, Peters S, Viseskul V (1987) Dextrorphan and levorphanol selectively block N- methyl-D-aspartate receptor-mediated neurotoxicity on cortical neurons. J Pharmacol Exp Ther 242: 713 – 720

    PubMed  CAS  Google Scholar 

  13. Deluga K, Plotz FB, Betz AL (1991) Effect of indomethacin on edema following single and repetitive cerebral ischemia in the gerbil. Stroke 22: 1259 – 1264

    Article  PubMed  CAS  Google Scholar 

  14. Furlan AJ, Higashida R, Wechsler L, Schulz G (1999) for the PROACT II Investigators. PROACT II: recombinant prourokinase (r-ProUK) in acute cerebral thromboembolism: initial trial results (abstract). Stroke 30:234

    Google Scholar 

  15. George CP, Goldberg MP, Choi DW, Steinberg GK (1988) Dextromethorphan reduced neocortical ischemic neuronal damage in vivo. Brain Res 440: 375 – 379

    Article  PubMed  CAS  Google Scholar 

  16. Ginsberg MD, Sternau LL, Globus MY, Dietrich WD, Busto R (1992) Therapeutic modulation of brain temperature: relevance to ischemic brain injury. Cerebrovasc Brain Metab Rev 4: 189 – 225

    PubMed  CAS  Google Scholar 

  17. Goldberg MK, Pham P-C, Choi DK (1987) Dextrorphan and dextromethorphan attenuate hypoxic injury in neuronal culture. Neurosci Lett 80: 11 – 15

    Article  PubMed  CAS  Google Scholar 

  18. Grotta JC, Picone CM, Ostrow PT, Strong RA, Earls RM, Yao LP, Rhoades HM, Dedman JR (1990) CGS-19755, a competitive NMDA receptor antagonists, reduces calcium-calmodulin binding and improves outcome after global cerebral ischemia. Ann Neurol 27: 612 – 619

    Article  PubMed  CAS  Google Scholar 

  19. Hindman BJ, Todd MM, Gelb AW, Loftus CM, Craen RA, Schubert A, Mahla ME, Torner JC (1999) Mild hypothermia as a protective therapy during intracranial aneurysm surgery: a randomized prospective pilot trial. Neurosurgery 44: 23 – 33

    Article  PubMed  CAS  Google Scholar 

  20. Ho DY, Saydam TC, Fink SL, Lawrence MS, Sapolsky RM (1995) Defective herpes simplex virus vectors expressing the rat brain glucose transporter protect cultured neurons from necrotic insults. J Neurochem 65: 842 – 848

    Article  PubMed  CAS  Google Scholar 

  21. Lawrence MS, Ho DY, Dash R, Sapolsky RM (1995) Herpes simplex virus vectors overexpres- sing the glucose transporter gene protect against seizure-induced neuron loss. Proc Natl Acad Sci USA, 92: 7247 – 7251

    Article  PubMed  CAS  Google Scholar 

  22. Lawrence MS, Ho DY, Sun GH, Steinberg GK, Sapolsky RM (1996) Overexpression of Bcl-2 with herpes simplex virus vector protects CNS neurons against neurologic insults in vitro and in vivo. J Neurosci 16: 486 – 496

    PubMed  CAS  Google Scholar 

  23. Lawrence MS, Sun GH, Ho DY, Kunis DM, Sapolsky RM, Steinberg GK (1997) Herpes simplex viral vectors expressing Bcl-2 are neuroprotective when delivered following a stroke. J Cereb Blood Flow Metab 17: 740 – 744

    Article  PubMed  CAS  Google Scholar 

  24. Lawrence MS, Sun G-H, Kunis DM, Saydam TC, Dash R, Ho DY, Sapolsky RM, Steinberg GK (1996) Overexpression of the glucose transporter gene with a herpes simplex viral vector protects striatal neurons against stroke. J Cereb Blood Flow Metab 16: 181 – 185

    Article  PubMed  CAS  Google Scholar 

  25. Lopez JR, Chang SD, Steinberg GK (1999) The utility of electrophysiological monitoring during microsurgery of cerebral aneurysms. J Neurol Neurosurg Psych 66: 189 - 196

    Article  CAS  Google Scholar 

  26. Maier CM, Ahern KVB, Cheng ML, Lee JE, Yenari MA, Steinberg GK (1999) Optimal depth and duration of mild hypothermia in a focal model of transient cerebral ischemia: effects on neurologic outcome, infarct size, apoptosis, and inflammation. Stroke 298: 2171 – 2180

    Google Scholar 

  27. Maier CM, Sun GH, Kunis D, Yenari MA, Steinberg GK (2001) Delayed induction and long- term effects of mild hypothermia in a focal model of transient cerebral ischemia: Neurological outcome and infarct size. J Neurosurg 94: 90 – 96

    Article  PubMed  CAS  Google Scholar 

  28. Marion DW, Penrod LE, Kelsey SF, Obrist WD, Kochanek PM, Palmer AM, Wisniewski SR, DeKosky ST (1996) Treatment of traumatic brain injury with moderate hypothermia. N Engl J Med 336: 540 – 546

    Article  Google Scholar 

  29. Moseley ME, Cohen Y, Mintorovitch J, Kucharczyk J, Weinstein PR (1990) Early detection of regional cerebral ischemia in cats: comparison of diffusion-and T2-weighted MRI and spectroscopy. Magn Reson Med 14: 330 – 336

    Article  PubMed  CAS  Google Scholar 

  30. The National Institute of Neurological Disorders and Stroke rt-PA Study Group (1995) Tissue plasminogen activator for acute ischemic stroke. N Engl J Med 333: 1581 – 1587

    Article  Google Scholar 

  31. Perez-Pinzon MA, Maier CM, Yoon EJ, Sun G-H, Giffard RG, Steinberg GK (1995) Correlation of CGS 19755 neuroprotection against in vitro excitotoxicity and focal cerebral ischemia. J Cereb Blood Flow Metab 15: 865 – 876

    Article  PubMed  CAS  Google Scholar 

  32. Rothman SM, Olney JW (1986) Glutamate and the pathophysiology of hypoxic-ischemic brain damage. Ann Neurol 19: 105 – 111

    Article  PubMed  CAS  Google Scholar 

  33. Sapolsky RM, Steinberg GK (199) Gene therapy for acute neurological injury. Neurology 53:1922–1931

    Google Scholar 

  34. Schwab S, Schwarz S, Spranger M, Keller E, Betram M, Hacke W (1998) Moderate hypothermia in the treatment of patients with severe middle cerebral artery infarction. Stroke 29: 2461 – 2466

    Article  PubMed  CAS  Google Scholar 

  35. Sherman DG (1999) For the STAT Writers Group. Defibrinogenation with Viprinex (ancrod) for the treatment of acute ischemic stroke (abstract). Stroke 30: 234

    Google Scholar 

  36. Steinberg GK, Gelb AW, Lam AM, Manninen PH, Peerless SJ, Rassi-Neto A, Floyd P (1986) Correlation between somatosensory evoked potentials and neuronal ischemic changes following middle cerebral artery occlusion. Stroke 17: 1193 – 1197

    Article  PubMed  CAS  Google Scholar 

  37. Steinberg GK, Saleh J, Kunis D (1988) Delayed treatment with dextromethorphan and dextror- phan reduces cerebral damage after transient focal ischemia. Neurosci Lett 89: 193 – 197

    Article  PubMed  CAS  Google Scholar 

  38. Steinberg GK, George CP, DeLaPaz R, Shibata DK, Gross T (1988) Dextromethorphan protects against cerebral injury following transient focal cerebral ischemia in rabbits. Stroke 19: 1112 – 1118

    Article  PubMed  CAS  Google Scholar 

  39. Steinberg GK, Saleh J, DeLaPaz R, Kunis D, Zarnegar SR (1989) Pre-treatment with the NMDA antagonist dextrorphan reduces cerebral injury following transient focal ischemia in rabbits. Brain Res 497: 382 – 386

    Article  PubMed  CAS  Google Scholar 

  40. Steinberg GK, Saleh J, Kunis D, DeLaPaz R, Zarnegar SR (1989) Protective effect of N-methyl- D-aspartate antagonists after focal cerebral ischemia in rabbits. Stroke 20: 1247 – 1252

    Article  PubMed  CAS  Google Scholar 

  41. Steinberg GK, Kunis D, Saleh J, DeLaPaz R (1991) Protection after transient focal cerebral ischemia by the NMDA antagonists dextrorphan, is dependent upon plasma and brain levels. J Cereb Blood Flow Metab 11: 1015 – 1024

    Article  PubMed  CAS  Google Scholar 

  42. Steinberg GK, Kunis D, DeLaPaz RL, Polijak A (1993) Neuroprotection following focal cerebral ischemia by the NMDA and calcium antagonist dextromethorphan has a favorable dose response profile. Neurol Res 15: 174 – 180

    PubMed  CAS  Google Scholar 

  43. Steinberg GK, Panahian N, Sun G-H, Maier CM, Kunis D (1994) Cerebral damage caused by interrupted, repeated arterial occlusion versus uninterrupted occlusion in a focal ischemic model. J Neurosurg 81: 554 – 559

    Article  PubMed  CAS  Google Scholar 

  44. Steinberg GK, Perez-Pinzon MA, Maier CM, Sun GH, Yoon E, Kunis DM, Bell TE, Powell M, Kotake A, Giffard R (1994) CGS 19755: correlation of in vitro neuroprotection, protection against experimental ischemia and CSF levels in cerebrovascular surgery patients. In: Kriegel- stein J (ed) Pharmacology of Cerebral Ischemia. Wiss Verl Ges, Stuttgart, pp 225 – 323

    Google Scholar 

  45. Steinberg GK, Grant G, Yoon E (1995) Deliberate hypothermia. In: Andrews R (ed) Intraoperative neuroprotection. Williams and Wilkins, Baltimore, pp 65 – 84

    Google Scholar 

  46. Steinberg GK, Panahian N, Perez-Pinzon MA, Sun G-H, Modi MW, Sepinwall J (1995) Narrow temporal therapeutic window for NMDA antagonist protection against focal cerebral ischemia. Neurobiol Dis 2: 109 – 118

    Article  PubMed  CAS  Google Scholar 

  47. Steinberg GK, Bell TE, Yenari MA (1996) Dose escalation safety and tolerance study of the NMDA antagonist, dextromethorphan, in neurosurgical patients. J Neurosurg 84: 860 - 866

    Article  PubMed  CAS  Google Scholar 

  48. Symon L, Wang AD, Costa e Silva IE, Gentili F (1984) Perioperative use of somatosensory evoked responses in aneurysm surgery. J Neurosurg 60: 269 – 275

    Article  PubMed  CAS  Google Scholar 

  49. Taylor CL, Selman WR (1998) Temporary vascular occlusion during cerebral aneurysm sur¬gery. Neurosurg Clin North Am 9: 673 – 679

    CAS  Google Scholar 

  50. Tomida S, Nowak TS, Jr, Vass K, Lohr JM, Klatzo I (1987) Experimental model for repetitive ischemic attacks in the gerbil: the cumulative effect of repeated ischemic insults. J Cereb Blood Flow Metab 7: 773 – 782

    Article  PubMed  CAS  Google Scholar 

  51. Williams GR, Jiang JG, Matchar DB, Samsa GP (1999) Incidence and occurrence of total (first- ever and recurrent) stroke. Stroke 30: 2523 – 2528

    Article  PubMed  CAS  Google Scholar 

  52. Yenari MA, Bell TE, Kotake A, Powell M, Steinberg GK (1998) Dose escalation and tolerance study of the competitive NMDA antagonist, CGS 19755 (Selfotel) in neurosurgery patients. Clin Neuropharmacol 21: 28 – 34

    PubMed  CAS  Google Scholar 

  53. Yenari MA, Lawrence MS, Sun GH, Ho DY, Kunis DM, Sapolsky RM, Steinberg GK (1996) Herpes simplex viral vectors expressing Bcl-2 are neuroprotective against focal cerebral ischemia. In: Kriegelstein J (ed) Pharmacology of cerebral ischemia. Wissenschaftliche Verlagsge- sellschaft, Stuttgart, pp 537 – 543

    Google Scholar 

  54. Yenari MA, Fink SL, Sun GH, Chang LK, Patel MK, Kunis DM, Onley D, Ho DY, Sapolsky RM, Steinberg GK (1998) Gene therapy with HSP72 is neuroprotective in rat models of stroke and epilepsy. Ann Neurol 44: 584 – 591

    Article  PubMed  CAS  Google Scholar 

  55. Yenari MA, Minami M, Sun GH, Meier TJ, Ho DY, Sapolsky RM, Steinberg GK (1999) Calbin- din D28K overexpression using gene transfer therapy improves striatal neuron survival following transient focal cerebral ischemia. Ann Neurol 46 (3): 479

    Google Scholar 

  56. Zivin JA, Lyden PD, DeGirolami U, Kochhar A, Mazzarella V, Hemenway CC, Johnston P (1988) Tissue plasminogen activator: reduction of neurological damage after experimental embolic stroke. Arch Neurol 45: 387 – 391

    PubMed  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Steinberg, G.K. (2001). Translating Experimental Stroke Research into the Clinical Arena. In: Maturation Phenomenon in Cerebral Ischemia IV. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59446-5_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59446-5_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41107-9

  • Online ISBN: 978-3-642-59446-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics