Skip to main content

3D Image Fusion

  • Chapter
3D Image Processing

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

  • 565 Accesses

Abstract

The routine production of 3D (three-dimensional) imaging data from modern imaging systems has led to a rapid growth in image post-processing methods. As described in previous chapters many of these can be applied to single 3D data sets to improve data interpretation by producing 3D visualizations of data content, or by allowing automatic identification of specific features using segmentation techniques. However, in many cases the data content of a single 3D image is inadequate to provide all the information required. Under these circumstances a combination of information from two or more separate data sets may be necessary. As practising radiologists we subconsciously perform this type of data fusion when we use images from CT and different MR sequences to attempt to better characterize an abnormality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alfano B, Brunetti A, Covelli EM (1997) Unsupervised, automated segmentation of the normal brain using a multi-spectral relaxometric magnetic resonance approach. Magn Reson Med 37:84–93.

    Article  CAS  PubMed  Google Scholar 

  • Alp MS, Dujovny M, Misra FT (1998) Head registration techniques for image-guided surgery. Neurol Res 20:31–37.

    CAS  PubMed  Google Scholar 

  • Ashburner J, Friston KJ (2000) Image registration. In: Moonen CTW, Bandettini PA (eds) Functional MRI. Springer, Berlin Heidelberg New York, pp 285–300.

    Chapter  Google Scholar 

  • Bydder GM (1995) The MacKenzie Davidson Memorial Lecture: detection of small changes in the brain with serial magnetic resonance imaging. Br J Radiol 68:1271–1295.

    Article  CAS  PubMed  Google Scholar 

  • Freeborough P, Woods R, Fox N (1996) Accurate registration of serial 3D MR brain images and its application to visualising change in neurodegenerative disorders. J Comput Assist Tomogr 20:1012–1022.

    Article  CAS  PubMed  Google Scholar 

  • Gardner JC, Yazdani F (1998) Correlating MR lesions and functional deficits in multiple sclerosis patients: anatomical atlas registration. Phys Med Rehabil Clin North Am 9:569–586.

    CAS  Google Scholar 

  • Greitz T, Bohm C, Holte S (1991) Computerized brain atlas: construction, anatomical content, and some applications. J Comput Assist Tomogr 15:26–38.

    Article  CAS  PubMed  Google Scholar 

  • Hajnal JV, Bydder GM (1997) Registration and subtraction of serial magnetic resonance images. I. Technique. In: Bradley WG, Bydder GM (eds) Advanced MR imaging techniques. Martin Dunitz, London.

    Google Scholar 

  • Hajnal JV, Saeed N, Soar EJ (1995a) Registration and interpolation procedure for subvoxel matching of serially acquired MR images. J Comput Assist Tomogr 19:289–296.

    Article  CAS  PubMed  Google Scholar 

  • Hajnal JV, Saeed N, Oatridge A (1995b) Detection of subtle brain changes using subvoxel registration and subtraction of serial MR images. J Comput Assist Tomogr 19:677–691.

    Article  CAS  PubMed  Google Scholar 

  • Holden M, Steen E, Lundervold A (1995) Segmentation and visualization of brain lesions in multispectral magnetic resonance images. Comput Med Imaging Graph 19:171–183.

    Article  CAS  PubMed  Google Scholar 

  • Ingvar M, Bohm C, Thurfjell L (1994) The role of a computerized adjustable brain atlas for merging of data from examinations using PET, SPECT, MEG, CT and MR images. In: Thatcher R, et al. (eds) Functional neuroimaging: technical foundations. Academic Press, San Diego.

    Google Scholar 

  • Kremser C, Plangger C, Bosecke R (1997) Image registration of MR and CT images using a frameless fiducial marker system. Magn Reson Imaging 15:579–585.

    Article  CAS  PubMed  Google Scholar 

  • Maurer CR Jr, Fitzpatrick JM, Wang MY (1997) Registration of head volume images using implantable fiducial markers. IEEE Trans Med Imaging 16:447–462.

    Article  PubMed  Google Scholar 

  • Nowinski W, Thirunavuukarasuu A (2000) Brain atlas for functional imaging. Thieme, Stuttgart.

    Google Scholar 

  • Nowinski W, Bryan R, Raghavan R (1997) The electronic clinical brain atlas multiplanar navigation of the human brain. Thieme, Stuttgart New York.

    Google Scholar 

  • Talairach J, Tournoux P (1988) Co-planar stereotactic atlas of the human brain. Thieme, Stuttgart.

    Google Scholar 

  • Thacker NA, Jackson A, Moriarty D (1999a) Improved quality of re-sliced MR images using re-normalized sine interpolation. J Magn Reson Imaging 10:582–588.

    Article  CAS  PubMed  Google Scholar 

  • Thacker N, Burton E, Lacey AJ (1999b) The effects of motion on parametric fMRI analysis techniques. Physiol Meas 20:251–263.

    Article  CAS  PubMed  Google Scholar 

  • Thacker N, Bathgate D, Varma A (2000) Automated analysis of the distribution and severity of cerebral atrophy in dementing diseases: diagnostic power in Alzheimer’s, frontotemporal and vascular dementia. Proceedings of the 8th annual meeting of the ISMRM, 2000, Denver.

    Google Scholar 

  • West J, Fitzpatrick JM, Wang MY (1999) Retrospective intermodality registration techniques for images of the head: surface-based versus volume-based. IEEE Trans Med Imaging 18:144–150.

    Article  CAS  PubMed  Google Scholar 

  • Woods RP, Grafton ST, Watson JD (1998a) Automated image registration. II. Intersubject validation of linear and nonlinear models. J Comput Assist Tomogr 22:153–165.

    Article  CAS  PubMed  Google Scholar 

  • Woods RP, Grafton ST, Holmes CJ (1998b) Automated image registration. I. General methods and intrasubject, intramodality validation. J Comput Assist Tomogr 22:139–152.

    Article  CAS  PubMed  Google Scholar 

  • Woods RP, Dapretto M, Sicotte NL (1999) Creation and use of a Talairach-compatible atlas for accurate, automated, nonlinear intersubject registration, and analysis of functional imaging data. Hum Brain Mapp 8:73–79.

    Article  CAS  PubMed  Google Scholar 

  • Zylka W, Sabczynski J (1999) Effect of localization devices and registration methods on the accuracy of stereotactic frame systems predicted by the Gaussian approach. Comput Aided Surg 4:77–86.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jackson, A., Thacker, N.A. (2002). 3D Image Fusion. In: Caramella, D., Bartolozzi, C. (eds) 3D Image Processing. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59438-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59438-0_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63977-7

  • Online ISBN: 978-3-642-59438-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics