Pseudorandom Sequences from Elliptic Curves

  • P. H. T. Beelen
  • J. M. Doumen


In this article we will generalize some known constructions to produce pseudorandom sequences with the aid of elliptic curves. We will make use of both additive and multiplicative characters on elliptic curves. Keywords are: Artin-Schreier extension, Kummer extension, elliptic curve, exponential sum, correlation, balance, linear recurrencies.


Elliptic Curve Finite Field Elliptic Curf Binary Sequence Algebraic Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Barg. A large family of sequences with low periodic correlation. Discrete Math. 176 (1–3), pages 21–27, 1997.MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    E. Bombieri. On exponential sums in finite fields. Amer. J. Math. 88, pages 71–105, 1966.MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    E. El Mahassni and I.E. Shparlinski. On the uniformity of distribution of congruential generators over elliptic curves. Sequences and their Applications-SETA ’01. pages 257–264. Springer, London, 2002.Google Scholar
  4. 4.
    G. Gong, T.A. Berson and D.R. Stinson. Elliptic curve pseudorandom sequence generators. Selected areas in cryptography (Kingston, ON, 1999 ), pages 34–48. Springer, Berlin. 2000.Google Scholar
  5. 5.
    G. Gong, C.C.Y. Lam. Recursive sequences over elliptic curves. Sequences and their Applications-SETA ’01, pages 182–196. Springer, London, 2002.Google Scholar
  6. 6.
    S. Hallgren. Linear congruential generators over elliptic curves. Preprint CS-94–143. Dept. of Cornp. Sei., Cornegie Mellon Univ., 1994.Google Scholar
  7. 7.
    A.J. Menezes, P.C. van Oorschot and S.A. Vanstone. Handbook of applied cryptography. CRC Press, Boca Raton, FL, 1997.zbMATHGoogle Scholar
  8. 8.
    D.R. Kohel and I.E. Shparlinski. Exponential sums and group generators for elliptic curves over finite fields. Lecture Notes in Comp. Sei. 1838, pages 395–404. Springer, Berlin, 2000.Google Scholar
  9. 9.
    M. Perret. Multiplicative character sums and nonlinear geometric codes. Eurocode ’80 (Udine. 1990 ), pages 158–165. Springer, Berlin, 1991.Google Scholar
  10. 10.
    I.E. Shparlinski. Finite Fields: Theory and Computation. Kluwer Academic Publishers, Dordrecht, 1999.zbMATHGoogle Scholar
  11. 11.
    J.H. Silverman. The arithmetic of elliptic curves. Springer, Berlin, 1986.zbMATHGoogle Scholar
  12. 12.
    H. Stichtenoth. Algebraic function fields and codes. Springer, Berlin, 1993.zbMATHGoogle Scholar
  13. 13.
    B.L. van der Waerden. Moderne Algebra. Springer, Berlin, 1940.Google Scholar
  14. 14.
    C. Voss. Abschiitzungen der Parameter von Spurcodes mit Hilfe algebraischer Funktionenkörper. Ph.D. Thesis, Universität Essen, 1993.Google Scholar
  15. 15.
    J.F. Voloch and J.L. Walker. Euclidean weights of codes from elliptic curves over rings. Trans. Amer. Math. Soc., 352 (11), pages 5063–5076, 2000.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • P. H. T. Beelen
    • 1
  • J. M. Doumen
    • 1
  1. 1.Department of Mathematics and Computer ScienceTechnische Universiteit EindhovenEindhovenThe Netherlands

Personalised recommendations