On the Fp-Linearity of the Generalized Gray Map Image of a \({Z_{{p^{k+1}}}}\)-Linear Code

  • H. Tapia-Recillas
  • G. Vega


A necessary and sufficient condition for the generalized Gray map image G(D)of a \({Z_{{p^{k+1}}}}\)-linear code D to be F p -linear is given for any prime p and any integer k ≥1. If p = 2 and the linear code is assumed to be cyclic, a necessary condition for G(D)to be linear is also given in terms of the generators of the ideal of D. Some examples to illustrate the results are given.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Carlet, “\({Z_{{2^k}}}\)-linear Codes”, IEEE Trans. Inform. Theory, vol. 44, pp. 1543–1547, July, 1998.MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    I. Duursma, M. Greferath, S.N. Litsyn and S.E. Schmidt, “A Z 8-Linear Lift of the Binary Golay Code and a Nonlinear Binary (96, 337, 24)-Code”, IEEE Trans. Inform. Theory, vol. 47, pp. 1596–1598. May., 2001.MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    M. Greferath and S.E. Schmidt, “Gray isometries for Finite Chain rings and a Nonlinear Ternary (36, 312, 15) Code”, IEEE Trans. Inform. Theory, vol. 45, pp. 2522–2524, Nov., 1999.MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    A. R. Hammons, Jr., P. V. Kumar, A. R. Calderbank, N. J. A. Sloane, and P. Solé, “The Z 4-linearity of Kerdock, Preparata, Goethals, and related codes,” IEEE Trans. Inform. Theory, vol. 40, pp. 301–319, 1994.MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    P. Kanwar and S. R. López-Parmouth, “Cyclic Codes over the Integers Modulo P m”. Finite Fields and their Applications 3, 334–352 (1997).MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes. Amsterdam, The Netherlands: North-Holland, 1977.zbMATHGoogle Scholar
  7. 7.
    H. Tapia-Recillas and G. Vega, “A Generalization of Negacyclic Codes.” Proc. International Workshop on Coding and Cryptography, WCC 2001, (D. Augot, Ed.), Paris, France, pp. 519–529, 2001.Google Scholar
  8. 8.
    G. Vega and H. Tapia-Recillas, “On the \({Z_{{p^k}}}\)-Linear and Quaternary Codes”. Submitted for publication.Google Scholar
  9. 9.
    J. Wolfmann, “Binary images of cyclic codes over Z 4”. IEEE, Trans. Inform. Theory, vol. 47. No. 5, pp. 1773–1779, 2001.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • H. Tapia-Recillas
    • 1
  • G. Vega
    • 2
  1. 1.Dpto. MatemáticasUAM-IMéxico D.F.
  2. 2.Dirección General de Servicios de Cómputo Académico (DGSCA)UNAMMéxico D.F.México

Personalised recommendations