On Polynomial Families in n Indeterminates over Finite Prime Fields Coming from Planar Functions

  • Nobuo Nakagawa
Conference paper


It is shown that there is a relation between planar functions of elementary abelian groups and bent polynomials. Moreover we prove several results concerning them.


Planar Function Bend Function Elementary Abelian Group Affine Plane Collineation Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Blokhuis A., Jungnickel D. and Schmidt B. Proof of the prime power conjecture for projective planes of order n with abelian collineation groups. To appear in Proc.AMS.Google Scholar
  2. 2.
    Coulter R.S. and Matthews R.W. (1997) Planar Functions and Planes of LenzBarlotti Class II. Designs, Codes and Cryptography 10: 167–184.MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Dembowski P. and Ostrom T.G. (1968) Planes of order n with colleneation groups of order n2. Math. Z. 103: 239–258.MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Fung C.L,Siu M.K. and Ma S.L. (1990) On arrays with small of phase binary autocorrelation. Ars Comb 29A: 189–192.MathSciNetGoogle Scholar
  5. 5.
    Ganley M.J(1976) On a paper of Dembowski and Ostrom. Arch. Math 27: 93–98.MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Gluck D. (1990) A note permutation polynomials and finite geometries.Discrete Math. 80: 97–100.MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Hiramine Y. (1989) A conjecture on affine planes of prime oeder. J. Combin. Theory Ser. A 52: 44–50MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Hiramine Y. (1991) Fatter sets associated with regular collineation groups. J.bra 152: 135–145.MathSciNetGoogle Scholar
  9. 9.
    Hiramine Y. (1992) Planar functions and related group algebras. J. Algebra 152: 135–145.MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Kumar P.V.K.,Scholt A. and Welch R.(1985)Generalized bent functions and their properties. J. Combin. Theory, Ser A 40: 90–107.MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Leung K.H.,Ma S.L. and Tan A.V. Planar functions from Z nto Z n. Preprint.Google Scholar
  12. 12.
    Lidl R. and Niederreiter H. (1984) Finite Fields. Cambridge University Press, Cambridge/London/New York.Google Scholar
  13. 13.
    Ma S.L. (1996) Planar functions,relative difference sets and character theory. J. Algebra 185: 342–356.MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Ma S.L. and Pott A. (1995) Relative difference sets, planar functions and generalized Hadamard matrices. J. Algebra 175: 505–525.MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Nakagawa N. (1993) The non-existence of right cyclic planar functions of degree p n for n≤ 2. J. Combin. Theory Ser A63: 55–64.MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Nakagawa N. (1997) Left Cyclic Planar Functions Of Degree pn. Utilitas Mathematica 51: 89–96.MathSciNetzbMATHGoogle Scholar
  17. 17.
    Ronayi L. and Szonyi T. (1989) Planar functions over finite fields. Combinatorica 9: 315–320.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Nobuo Nakagawa
    • 1
  1. 1.Department of MathematicsKinki UniversityHigashi-Osaka, OsakaJapan

Personalised recommendations