Continued Fractions for Certain Algebraic Power Series over a Finite Field

  • Alain Lasjaunias

Abstract

In this survey we discuss rational approximation properties of certain algebraic power series over a finite field using continued fractions. These algebraic elements are fixed points of the composition of a linear fractional transformation and of the Frobenius homomorphism.

Keywords

Peri Teal 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [BS1]
    Baum L. and Sweet M., Continued fractions of algebraic power series in characteristic 2, Annals of Mathematics, 103 (1976), 593–610.MathSciNetMATHCrossRefGoogle Scholar
  2. [BS2]
    Baum L. and Sweet M., Badly approximable power series in characteristic 2, Annals of Mathematics, 105 (1977), 573–580.MathSciNetMATHCrossRefGoogle Scholar
  3. [Ll]
    Lasjaunias A., A survey of diophantine approximation in fields of power series, Monatshefte für Mathematik, 130 (2000), 211–229.MathSciNetMATHCrossRefGoogle Scholar
  4. [L2]
    Lasjaunias A., Quartic power series in F3((T-1)) with bounded partial quotients, Acta Arithmetica, XCV. 1 (2000), 49–59.MathSciNetGoogle Scholar
  5. [L3]
    Lasjaunias A., Continued fractions for algebraic power series over a finite field, Finite Fields and their Applications, 5 (1999), 46–56.MathSciNetMATHCrossRefGoogle Scholar
  6. [LdM1]
    Lasjaunias A. and de Mathan B., Thue’s Theorem in positive characteristic, Journal für die reine und angewandte Mathematik, 473 (1996), 195–206.MathSciNetMATHCrossRefGoogle Scholar
  7. [LdM2]
    Lasjaunias A. and de Mathan B., Differential equations and diophantine approximation in positive characteristic, Monatshefte für Mathematik, 128 (1999), 1–6.MathSciNetMATHCrossRefGoogle Scholar
  8. [LR1]
    Lasjaunias A. and Ruch J-J., Algebraic and badly approximable power series over a finite field, Finite Fields and their Applications, 8 (2002), 91–107.MathSciNetMATHCrossRefGoogle Scholar
  9. [LR2]
    Lasjaunias A. and Ruch J-J., Flat power series over a finite field, Journal of Number Theory, to appear.Google Scholar
  10. [M]
    Mahler K., On a theorem of Liouville in fields of positive characteristic, Canadian Journal of Mathematics, 1 (1949), 397–400.MathSciNetMATHCrossRefGoogle Scholar
  11. [dM]
    de Mathan B. Approximation exponents for algebraic functions, Acta Arithmetica, LX. 4 (1992), 359–370.Google Scholar
  12. [MR]
    Mills W. and Robbins D., Continued fractions for certain algebraic power series, Journal of Number Theory, 23 (1986), 388–404.MathSciNetMATHCrossRefGoogle Scholar
  13. [S]
    Schmidt W., On Continued fractions and diophantine approximation in power series fields, Acta Arithmetica, XCV. 2 (2000), 139–165.Google Scholar
  14. [T]
    Thakur D., Diophantine approximation exponents and continued fractions for algebraic power series, Journal of Number Theory, 79 (1999), 284–291.MathSciNetMATHCrossRefGoogle Scholar
  15. [V]
    Voloch J-F., Diophantine approximation in positive characteristic, Periodica Mathematica Hungarica, 19. 3 (1988), 217–225.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Alain Lasjaunias
    • 1
  1. 1.Université de Bordeaux ICNRS-UMR 5465Talence CedexFrance

Personalised recommendations