Advertisement

A Note on the Counter-Example of Patterson—Wiedemann

  • Philippe Langevin
  • Jean-Pierre Zanotti
Conference paper

Abstract

Following Patterson and Wiedemann [10], we find new counter-examples for a conjecture of Mykkelveit [9] related to the covering radius of the first order Reed-Muller code. One of them has a remarkable algebraic structure.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arasu K. T., Haemers W. H., Jungnickel D., Pott A. Matrix constructions of divisible designs. Linear of Algebra and its Applications, 153, 1991.Google Scholar
  2. 2.
    Berlekamp E. R., Welch L. R. Distributions of the cosets of the (32, 6) Reed-Muller code. IEEE Transactions on Information Theory, 13 (1): 203–207, 1972.MathSciNetCrossRefGoogle Scholar
  3. 3.
    Constantin J., Courteau B., Wolfmann J. Numerical experiments related to the covering radius of some Reed-Muller codes. In Lecture Notes in Computer Science, editor, Algebraic Algorithms and Error-Correcting Codes, volume 229, pages 69–75. 3rd International Conference AAECC, 1986.Google Scholar
  4. 4.
    Dillon J. F. Elementary Hadamard Difference Sets. PhD thesis, University of Maryland, 1974.Google Scholar
  5. 5.
    Dillon J. F. Elementary Hadamard difference sets. In sixth SECCGTC, 1975.Google Scholar
  6. 6.
    Hou X.-D. Covering radius of the Reed-Muller code R(1, 7) — a simpler proof. Journal of Combinatorial Theory, 74, 1996.Google Scholar
  7. 7.
    Lachaud G., Wolfmann J. Sommes de Kloosterman, courbes elliptiques et codes cycliques en caractéristique 2. Comptes rendus de l’académie des sciences, 305: 881–883, 1987.MathSciNetzbMATHGoogle Scholar
  8. 8.
    Lidl R., Niederreiter H. Finite Fields, volume 20 of Encyclopedia of Mathematics and its Applications. Addison-Wesley, 1983.Google Scholar
  9. 9.
    Mykkelveit J. J. The covering radius of the (128, 8) Reed-Muller codes is 56. IEEE Transactions on Information Theory, 26 (3): 359–362, 1980.CrossRefGoogle Scholar
  10. 10.
    Patterson N. J., Wiedemann D. H. The covering radius of the (1, 15) Reed-Muller code is at least 16276. IEEE Transactions on Information Theory, 29: 354–356, 1983.MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Rothaus O. S. On bent functions. Journal of Combinatorial Theory (A), 20: 300–305, 1976.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Philippe Langevin
    • 1
  • Jean-Pierre Zanotti
    • 1
  1. 1.Groupe de Recherche en Informatique et MathématiquesUniversité de Toulon et du VarLa Garde cedexFrance

Personalised recommendations