Skip to main content

Avoiding Proteasomal Processing: The Case of EBNA1

  • Chapter

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 269))

Abstract

Ubiquitin/proteasome-dependent proteolysis is involved in the regulation of a large variety of cellular processes including cell cycle progression, tissue development and atrophy, flux of substrates through metabolic pathways, selective elimination of abnormal proteins and processing of intracellular antigens for major histocompatibility complex (MHC) class I-restricted T-cell responses. Many viruses tamper with this proteolytic machinery by encoding proteins that interact with various components of the pathway. A particularly interesting example of a viral protein that interferes with proteasomal processing is the Epstein-Barr virus (EBV) nuclear antigen-1 (EBNA1). EBNA1 contains an internal repeat exclusively composed of glycines and alanines that inhibits in cis the presentation of MHC class I-restricted T-cell epitopes and prevents ubiquitin/proteasome-dependent proteolysis in vitro and in vivo. The glycine-alanine repeat acts as a transferable element on a variety of proteasomal substrates and may therefore provide a new approach to the modification of cellular proteins for therapeutic purposes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Babcock GJ, Thorley-Lawson DA (2000) Tonsillar memory B cells, latently infected with Epstein-Barr virus, express the restricted pattern of latent genes previously found only in Epstein-Barr virus-associated tumors. Proc Natl Acad Sci USA 97:12250–12255

    Article  PubMed  CAS  Google Scholar 

  • Babcock JG, Hochberg D, Thorley-Lawson AD (2000) The expression pattern of Epstein-Barr virus latent genes in vivo is dependent upon the differentiation stage of the infected B cell. Immunity 13:497–506

    Article  PubMed  CAS  Google Scholar 

  • Bercovich B, Stancovski I, Mayer A, Blumenfeld N, Laszlo A, Schwartz AL. Ciechanover A (1997) Ubiquitin-dependent degradation of certain protein substrates in vitro requires the molecular chaperone Hsc70. J Biol Chem 272:9002–9010

    Google Scholar 

  • Blake N, Haigh T, Shaka’a G, Croom-Carter D, Rickinson A (2000) The importance of exogenous antigen in priming the human CD8 T cell response: lessons from the EBV nuclear antigen EBNAl. J Immunol 165:7078–7087

    PubMed  CAS  Google Scholar 

  • Blake N, Lee S, Redchenko I, Thomas W, Steven N, Leese A, Steigerwald-Mullen P. Kurilla MG. Frappier L, Rickinson A (1997) Human CD8 T cell responses to EBV EBNAl: HLA class I presentation of the (Gly-Ala)-containing protein requires exogenous processing. Immunity 7:791–802

    Article  PubMed  CAS  Google Scholar 

  • Blake NW, Moghaddam A, Rao P, Kaur A, Glickman R, Cho YG, Marchini A, Haigh T, Johnson RP, Rickinson AB, Wang F (1999) Inhibition of antigen presentation by the glycine/alanine repeat domain is not conserved in simian homologues of Epstein-Barr virus nuclear antigen 1. J Virol 73: 7381–7389

    PubMed  CAS  Google Scholar 

  • Bochtler M, Ditzel L, Groll M, Hartmann C, Huber R (1999) The proteasome. Annu Rev Biophys Biomol Struct 28:295–317

    Article  PubMed  CAS  Google Scholar 

  • Boyer SN, Wazer DE, Band V (1996) E7 protein of human papilloma virus-16 induces degradation of retinoblastoma protein through the ubiquitin-proteasome pathway. Cancer Res 56:4620–4624

    PubMed  CAS  Google Scholar 

  • Braun BC, Glickman M, Kraft R, Dahlmann B, Kloetzel PM, Finley D, Schmidt M (1999) The base of the proteasome regulatory particle exhibits chaperone-like activity. Nat Cell Biol 1:221–226

    Article  PubMed  CAS  Google Scholar 

  • Chen F, Zou JZ, di Rienzo L, Wimberg G, Hu LF, Klein E, Klein G, Ernberg I (1995) A subpopulation of latently EBV infected normal B-cells resembles Burkitt lymphoma (BL) in expressing EBNA1 but not EBNA2 or LMP1. J Virol 1995:3752–3758

    Google Scholar 

  • Cho YG, Ramer J, Rivailler P, Quink C, Garber RL, Beier DR, Wang F (2001) An Epstein-Barr-related herpesvirus from marmoset lymphomas. Proc Natl Acad Sci USA 98:1224–1229

    Article  PubMed  CAS  Google Scholar 

  • Chung CH, Baek SH (1999) Deubiquitinating enzymes: their diversity and emerging roles. Biochem Biophys Res Commun 266:633–640

    Article  PubMed  CAS  Google Scholar 

  • Dantuma NP, Lindsten K, Glas R, Jellne M, Masucci MG (2000a) Short-lived green fluorescent proteins for quantification of ubiquitin/proteasome-dependent proteolysis in living cells. Nat Biotech 18: 538–543

    Article  CAS  Google Scholar 

  • Dantuma NP, Heessen S, Lindsten K, Jellne M, Masucci MG (2000b) Inhibition of proteasomal degradation by the Gly-Ala repeat of Epstein-Barr virus is influenced by the length of the repeat and the strength of the degradation signal. Proc Natl Acad Sci USA 97:8381–8385

    Article  PubMed  CAS  Google Scholar 

  • Dillner J, Sternas L, Kallin B, Alexander H, Ehlin-Henriksson B, Jornvall J, Klein G, Lerner R (1984) Antibodies against a synthetic peptide identify the Epstein-Barr virus-determined nuclear antigen. Proc Natl Acad Sci USA 81:4652–4656

    Article  PubMed  CAS  Google Scholar 

  • Falk K, Gratama JW, Rowe M, Zou JZ, Khanim F, Young LS, Oosterveer MAP, Ernberg I (1995) The role of repetitive DNA sequences in the size variation of Epstein-Barr virus (EBV) nuclear antigens, and the identification of different EBV isolates using RFLP and PCR analysis. J Gen Virol 76:779–790

    Article  PubMed  CAS  Google Scholar 

  • Ferrell K, Deveraux Q, van Nocker S, Rechsteiner M (1996) Molecular cloning and expression of a multiubiquitin chain binding subunit of the human 26S protease. FEBS Lett 381:143–148

    Article  PubMed  CAS  Google Scholar 

  • Gaczynska M, Goldberg AL, Tanaka K, Hendil KB, Rock KL (1996) Proteasome subunits X and Y alter peptidase activities in opposite ways to the interferon-γ-induced subunits LMP2 and LMP7. J Biol Chem 271:17275–17280

    Article  PubMed  CAS  Google Scholar 

  • Gaczynska M, Rock KL, Goldberg AL (1993) γ-Interferon and expression of MHC genes regulate peptide hydrolysis by proteasomes. Nature 365:264–267

    Article  PubMed  CAS  Google Scholar 

  • Ghislain M, Dohmen RJ, Levy F, Yarshavsky A (1996) Cdc48p interacts with Ufd3p, a WD repeat protein required for ubiquitin-mediated proteolysis in Saccharomvces cerevisiae. EMBO J 15: 4884–4899

    PubMed  CAS  Google Scholar 

  • Gilbert MJ, Riddell SR, Plachter B, Greenberg PD (1996) Cytomegalovirus selectively blocks antigen processing and presentation of its immediate-early gene product. Nature 383:720–722

    Article  PubMed  CAS  Google Scholar 

  • Glickman MH, Rubin DM, Coux O, Wefes I, Pfeifer G, Cjeka Z, Baumeister W, Fried VA, Finley D (1998) A subcomplex of the proteasome regulatory particle required for ubiquitin-conjugate degradation and related to the COP9-signalosome and eIF3. Cell 94:615–623

    Article  PubMed  CAS  Google Scholar 

  • Glorioso JC, Naldini L, Kay MA (2001) Viral vectors for gene therapy: the art of turning infectious agents into vehicles of therapeutics. Nat Med 7:33–40

    Article  PubMed  Google Scholar 

  • Grand RJA, Turnell AS, Mason GGF, Wnag W, Milner AE, Mymryk JS, Rookes SM, Rivett AJ, Gallimore PH (1999) Adenovirus early region 1A protein binds to mammalian SUGl-a regulatory component of the proteasome. Oncogene 18:449–458

    Article  PubMed  CAS  Google Scholar 

  • Groettrup M, Soza A, Eggers M, Kuehn L, Dick TP, Schild H, Rammensee HG, Koszinowski UH, Kloetzel PM (1996) A role for the proteasome regulator PA28a in antigen presentation. Nature 381:166–168

    Article  PubMed  CAS  Google Scholar 

  • Hershko A, Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67:425–479

    Article  PubMed  CAS  Google Scholar 

  • High KA (2000) Gene therapy in haematology and oncology. Lancet 356 Suppl: s8

    Google Scholar 

  • Hisamatsu H, Shimbara N, Saito Y, Kristensen P, Hendil KB, Fujiwara T, Takahashi E, Tanahashi N, Tamura T, Ichihara A, Tanaka K (1996) Newly identified pair of proteasomal subunits regulated reciprocally by interferon γ. J Exp Med 183:1807–1816

    Article  PubMed  CAS  Google Scholar 

  • Hu Z, Zhang Z, Doo E, Coux O, Goldberg AL, Liang TJ (1999) Hepatitis B virus X protein is both a substrate and a potential inhibitor of the proteasome complex. J Virol 73:7231–7240

    PubMed  CAS  Google Scholar 

  • Johnson ES, Ma PC, Ota IM, Varshavsky A (1995) A proteolytic pathway that recognizes ubiquitin as a degradation signal. J Biol Chem 270:17442–17456

    Article  PubMed  CAS  Google Scholar 

  • Karin M, Ben-Neriah Y (2000) Phosphorylation meets ubiquitination: the control of NF-κB activity.Annu Rev Immunol 18:621–663

    Article  PubMed  CAS  Google Scholar 

  • Kieff E. (1996) Epstein-Barr virus and its replication. In: Fields BN, Knipe DM, Howley PM (eds) Fields Virology, 3rd edition. Lippincott, Raven Publishers, Philadelphia, Vol 2, pp 2343 2396

    Google Scholar 

  • Kisselev AF, Akopian TN, Woo KM, Goldberg AL (1999) The sizes of peptides generated from protein by mammalian 26 and 20S proteasomes. Implications for understanding the degradative mechanism and antigen presentation. J Biol Chem 274:3363–3371

    Article  PubMed  CAS  Google Scholar 

  • Koegl M, Hoppe T, Schlenker S, Ulrich HD, Mayer TU, Jentsch S (1999) A novel ubiquitination factor, E4, is involved in multiubiquitin chain assembly. Cell 96:635–644

    Article  PubMed  CAS  Google Scholar 

  • Kuehn L, Dahlmann B (1997) Structural and functional properties of proteasome activator PA28. Mol Biol Rep 24:89–93

    Article  PubMed  CAS  Google Scholar 

  • Laney J, Hochstrasser M (1999) Substrate targeting in the ubiquitin system. Cell 97:427–430

    Article  PubMed  CAS  Google Scholar 

  • Leonchiks A, Liepinsh E, Barishev M, Sharipo A, Masucci M, Otting G (1998) Random coil conformation of a Gly/Ala-rich insert in IκB α excludes structural stabilization as the mechanism for protection against proteasomal degradation. FEBS Lett 440:365–369

    Article  PubMed  CAS  Google Scholar 

  • Levitskaya J, Coram M, Levitsky V, Imreh S, Stegerwald-Mullen PM, Klein G, Kurilla MG, Masucci MG (1995) Inhibition of antigen processing by the internal repeat region of the Epstein-Barr Virus nuclear antigen-1. Nature 375:685–688

    Article  PubMed  CAS  Google Scholar 

  • Levitskaya J, Sharipo A. Leonchiks A, Ciechanover A, Masucci M (1997) Inhibition of ubiquitin/pro-teasome-dependent protein degradation by the Gly-Ala repeat domain of the Epstein-Barr virus nuclear antigen 1. Proc Natl Acad Sci USA 94:12616α12621

    Article  PubMed  CAS  Google Scholar 

  • Mantovani F, Banks L (1999) Inhibition of E6 induced degradation of p53 is not sufficient for stabilization of p53 protein in cervical tumour derived cell lines. Oncogene 18:3309–3315

    Article  PubMed  CAS  Google Scholar 

  • Meacham GC, Patterson C, Zhang W, Younger JM, Cyr DM (2001) The Hsc70 co-chaperone CHIP targets immature CFTR for proteasomal degradation. Nat Cell Biol 3:100–105

    Article  PubMed  CAS  Google Scholar 

  • Miyashita EM, Yang B, Lam KM, Crawford DH, Thorley-Lawson DA (1995) A novel form of Epstein Barr virus latency in normal B cells in vivo. Cell 80:593–601

    Article  PubMed  CAS  Google Scholar 

  • Mukherjee S, Trivedi P, Dorfman DM, Klein G, Townsend A (1998) Murine cytotoxic T lymphocytes recognize an epitope in an EBNA-1 fragment, but fail to lyse EBNA-1-expressing mouse cells. J Exp Med 187:445–450

    Article  PubMed  CAS  Google Scholar 

  • Nonkwelo C, Ruf IK, Sample J (1997) The Epstein-Barr virus EBNA-1 promoter Qp requires an initiator-like element. J Virol 71:354–361

    PubMed  CAS  Google Scholar 

  • Pak M, Hoskins JR, Singh SK, Maurizi MR, Wickner S (1999) Concurrent chaperone and protease activities of ClpAP and the requirement for the N-terminal ClpA ATP binding site for chaperone activity. J Biol Chem 274:19316–19322

    Article  PubMed  CAS  Google Scholar 

  • Pamer E, Cresswell P (1998) Mechanisms of MHC class I-restricted antigen processing. Annu Rev Immunol 16:323–358

    Article  PubMed  CAS  Google Scholar 

  • Ploegh HL (1995) Trafficking and assembly of MHC molecules: how viruses elude the immune system. Cold Spring Harbor Symp Quant Biol 60:263–266

    PubMed  CAS  Google Scholar 

  • Powis SH (1998) Lessons from an age-old war. Nat Med 4:887–888

    Article  PubMed  CAS  Google Scholar 

  • Rechsteiner M, Rogers SW (1996) PEST sequences and regulation by proteolysis. Trends Biochem Sci 21:267–271

    PubMed  CAS  Google Scholar 

  • Reits EA, Vos JC, Gromme M, Neefjes J (2000) The major substrates for TAP in vivo are derived from newly synthesized proteins. Nature 404:774–778

    Article  PubMed  CAS  Google Scholar 

  • Rickinson AB, Kieff E (1996) Epstein-Barr virus. In: Fields BN, Knipe DM, Howley PM (eds) Fields Virology, 3rd edition. Lippincott, Raven Publishers, Philadelphia, Vol 2, pp 2397–2446

    Google Scholar 

  • Rickinson AB, Moss DJ (1997) Human cytotoxic T lymphocyte responses to Epstein-Barr virus infection. Annu Rev Immunol 15:405–431

    Article  PubMed  CAS  Google Scholar 

  • Rock KL, Goldberg AL (1999) Degradation of cell proteins and the generation of MHC class I-presented peptides. Annu Rev Immunol 17:739–779

    Article  PubMed  CAS  Google Scholar 

  • Rock KL, Gramm C, Rothstein L, Clark K, Stein R, Dick L, Hwang D, Goldberg AL (1994) Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules. Cell 78:761–771

    Article  PubMed  CAS  Google Scholar 

  • Rorth P, Szabo K, Texido G (2000) The level of C EBP protein is critical for cell migration during Drosophila oogenesis and is tightly controlled by regulated degradation. Mol Cell 6:23–30

    PubMed  CAS  Google Scholar 

  • Rousset R, Desbois C, Bantignies F. Jalinot P (1996) Effects on NF-κ1/p105 processing of the interaction between the HTLV-1 transactivator Tax and the proteasome. Nature 381:328 331

    Article  PubMed  CAS  Google Scholar 

  • Schaefer BC, Woisetschlaeger M, Strominger JL, Speck SH (1991) Exclusive expression of Epstein-Barr virus nuclear antigen 1 in Burkitt lymphoma arises from a third promoter, distinct from the promoters used in latently infected lymphocytes. Proc Natl Acad Sei USA 88:6550–6554

    Article  CAS  Google Scholar 

  • Schubert U, Anton LC, Gibbs J, Norbury CC, Yewdell JW, Bennink JR (2000) Rapid degradation of a large fraction of newly synthesized proteins by proteasomes. Nature 404:770–774

    Article  PubMed  CAS  Google Scholar 

  • Seeger M, Ferrell K, Frank R, Dubiel W (1997) HIV-1 tat inhibits the 20S proteasome and its IIS regulator-mediated activation. J Biol Chem 272:8145–8148

    Article  PubMed  CAS  Google Scholar 

  • Sharipo A, Imreh M, Bränden CI, Masucci MG (2001) Cw-inhibition of proteasomal degradation by viral repeats: impact of length and amino acid composition. FEBS Lett 499:137–142

    Article  PubMed  CAS  Google Scholar 

  • Sharipo A, Imreh M, Leonchiks A, Imreh S, Masucci M (1998) A minimal glycine-alanine repeat prevents the interaction of ubiquitinated IKB-α with the proteasome: a new mechanism for selective inhibition of proteolysis. Nat Med 4:939–944

    Article  PubMed  CAS  Google Scholar 

  • Strickland E, Hakala K, Thomas PJ, DeMartino GN (2000) Recognition of misfolding proteins by PA700, the regulatory subcomplex of the 26S proteasome. J Biol Chem 275:5565–5572

    Article  PubMed  CAS  Google Scholar 

  • Stuber G, Dillner J, Modrow S, Wolf H, Szekely L, Klein G, Klein E (1995) HLA-A0201 and HLA-B7 binding peptides in the EBV-encoded EBNA-1, EBNA-2 and BZLF-1 proteins detected in the MHC class I stabilization assay. Low proportion of binding motifs for several HLA class I alleles in EBNA-1. Int Immunol 7:653–663

    Article  PubMed  CAS  Google Scholar 

  • Thrower JS, Hoffman L, Rechsteiner M, Pickart CM (2000) Recognition of the polyubiquitin proteolytic signal. EMBO J 19:94–102

    Article  PubMed  CAS  Google Scholar 

  • Tobery T, Siliciano RF (1999) Cutting edge: induction of enhanced CTL-dependent protective immunity in vivo by N-end rule targeting of a model tumor antigen. J Immunol 162:639–642

    PubMed  CAS  Google Scholar 

  • Townsend A, Rothbard J, Gotch F, Bahadur B, Wraith D, McMichael A (1986) The epitopes of influenza nucleoprotein recognized by cytotoxic T lymphocytes can be defined with short synthetic peptides. Cell 44:959–968

    Article  PubMed  CAS  Google Scholar 

  • Turnell AS, Grand RJ, Gorbea C, Zhang X, Wang W, Mymryk JS, Gallimore PH (2000) Regulation of the 26S proteasome by adenovirus E1A. EMBO J 19:4759–4773

    Article  PubMed  CAS  Google Scholar 

  • van Nocker S, Sadis S, Rubin DM, Glickman M, Fu H, Coux O, Wefes I, Finley D, Vierstra RD (1996) The multiubiquitin-chain-binding protein Mcbl is a component of the 26S proteasome in Saccharomyces cerevisiae and plays a nonessential, substrate-specific role in protein turnover. Mol Cell Biol 16:6020–6028

    PubMed  Google Scholar 

  • Varshavsky A (1996) The N-end rule: functions, mysteries, uses. Proc Natl Acad Sei USA 93:12142–12149

    Article  CAS  Google Scholar 

  • Voges D, Zwickl P, Baumeister W (1999) The 26S proteasome: a molecular machine designed for controlled proteolysis. Annu Rev Biochem 68:1015–1068

    Article  PubMed  CAS  Google Scholar 

  • Walls D, Perricaudet M (1991) Novel downstream element upregulates transcription initiated from an Epstein-Barr virus latent promoter. EMBO J 10:143–151

    PubMed  CAS  Google Scholar 

  • Whitby FG, Masters EI, Kramer L, Knowlton JR, Yao Y, Wang CC, Hill CP (2000) Structural basis for the activation of 20S proteasomes by IIS regulators. Nature 408:115–120

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson KD (2000) Ubiquitination and deubiquitination: targeting of proteins for degradation by the proteasome. Semin Cell Dev Biol 11:141–148

    Article  PubMed  CAS  Google Scholar 

  • Xie Y, Varshavsky A (2000) Physical association of ubiquitin ligases and the 26S proteasome. Proc Natl Acad Sei USA 97:2497–2502

    Article  CAS  Google Scholar 

  • Yates J, Warren N, Reisman D, Sugden B (1984) A cw-acting element from the Epstein-Barr viral genome that permits stable replication of recombinant plasmids in latently infected cells. Proc Natl Acad Sei USA 81:3806–3810

    Article  CAS  Google Scholar 

  • Zhang Z, Torii N, Furusaka A, Malayaman N, Hu Z, Liang TJ (2000) Structural and functional characterization of interaction between hepatitis B virus X protein and the proteasome complex. J Biol Chem 275:15157–15165

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dantuma, N.P., Sharipo, A., Masucci, M.G. (2002). Avoiding Proteasomal Processing: The Case of EBNA1. In: Koszinowski, U.H., Hengel, H. (eds) Viral Proteins Counteracting Host Defenses. Current Topics in Microbiology and Immunology, vol 269. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59421-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59421-2_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63974-6

  • Online ISBN: 978-3-642-59421-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics