Skip to main content

Inhibitors of Biosynthesis of Very-Long-Chain Fatty Acids

  • Chapter
Herbicide Classes in Development

Abstract

Chloroacetamides have been used in maize, soybean or rice for about 50 years (Hamm 1974). During 1997/1998 in the USA, this class contributed to about 50% of the herbicides applied in corn and 11% in soybean (Anonymous 1999). Safeners have successfully broadened their use, and postemergence weed treatment has been improved by the concurrent application of chloroacetamides which are taken up via the soil. Their persistence ensures long-term weed control. Chloroacetamides are xylem-transported; they interfere with the early development of weeds. Germination generally takes place but growth is inhibited, and the seedlings do not emerge or remain stunted. Figure 1 demonstrates the latter effect for cucumber and barley seedlings. The first leaves emerging from the hypocotyl and the cotyledons of dicot plants are small and mis-formed, but the cotyledons and leaves are never bleached, showing a somewhat increased chlorophyll content. Cell division and enlargement are both inhibited (Deal and Hess 1980) which could also be shown with the microalgae Chlamydomonas (Fedtke 1982) and Scenedesmus (Weisshaar and Böger 1987). The latter authors assumed that an impaired membrane formation caused the halt of cell division.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agrawal VP, Lessire R, Stumpf PK (1984) Biosynthesis of very-long-chain fatty acids in micro-somes from epidermal cells of Allium porrum L. Arch Biochem Biophys 230:580–589

    Article  PubMed  CAS  Google Scholar 

  • Anonymous (1999) Roundup usage doubles on US soybeans Agrow, no 330, pp 17–18

    Google Scholar 

  • Asai M, Yogo Y (1998) Dose response analysis and estimation of I50 of paddy amide herbicides for prediction of duration of activity. Weed Sci Soc Am (WSSA) Abstr Book 38:65

    Google Scholar 

  • Barrett PB, Harwood JL (1998) Naphthalic anhydride prevents inhibition of fatty acid elongation by thiocarbamates. Phytochemistry 49:1897–1903

    Article  CAS  Google Scholar 

  • Böger P, Matthes B, Schmalfuß J (2000) Towards the primary target of chloroacetamides - new findings pave the way. Pestic Manage Sci 56:497–508

    Article  Google Scholar 

  • Brown DA, London E (2000) Structure and function of sphingolipid-and cholesterol-rich membrane rafts. J Biol Chem 275:17221–17224

    Article  PubMed  CAS  Google Scholar 

  • Brown RB (1998) Sphingolipid organization in biomembranes: what physical studies of model membranes reveal. J Cell Sci 111:1–9

    PubMed  CAS  Google Scholar 

  • Burnet MWM, Barr AR, Powles SB (1994) Chloroacetamide resistance in rigid ryegrass (Lolium rigidum). Weed Sci 42:153–157

    CAS  Google Scholar 

  • Cahoon EB, Lynch DV (1991) Analysis of glucocerebrosides of rye (Secale cereale L. cv. Puma) leaf and plasma membrane. Plant Physiol 95:58–68

    Article  PubMed  CAS  Google Scholar 

  • Cassagne C, Lessire R, Bessoule JJ, Moreau P, Creach A, Schneider F, Stubois B (1994) Biosynthesis of very-long-chain fatty acids in higher plants. Prog Lipid Res 33:55–69

    Article  PubMed  CAS  Google Scholar 

  • Cook HW (1994) Fatty acid desaturation and chain elongation in eukaryotes. In: Vance DE, Vance JE (eds) Lipoproteins and membranes. Elsevier, Amsterdam, pp 129–152

    Google Scholar 

  • Couderchet M, Böger P (1993) Chloroacetamide-induced reduction of fatty acid desaturation. Pestic Biochem Physiol 45:91–97

    Article  CAS  Google Scholar 

  • Couderchet M, Brozio B, Böger P (1994) Effect and metabolism of the chloroacetamide herbicide metazachlor: comparison of plant cell suspension cultures and seedlings. J Pestic Sci 19: 127–135

    CAS  Google Scholar 

  • Couderchet M, Rumbolz J, Kring F, Böger P (1995) Characteristics of a metazachlor-resistant Scenedesmus acutus cell line. Pestic Biochem Physiol 52:222–233

    Article  CAS  Google Scholar 

  • Couderchet M, Bocion PF, Chollet R, Seckinger K, Böger P (1997) Biological activity of two stereoisomers of the N-thienyl chloroacetamide herbicide dimethenamide. Pestic Sci 50: 221–227

    Article  CAS  Google Scholar 

  • Couderchet M, Schmalfuß J, Böger P (1998) A specific and sensitive assay to quantify the herbicidal activity of chloroacetamides. Pestic Sci 52:381–387

    Article  CAS  Google Scholar 

  • Deal LM, Hess FD (1980) An analysis of the growth inhibitory characteristics of alachlor and metolachlor. Weed Sci 28:168–175

    CAS  Google Scholar 

  • Domergue F, Besoule JJ, Moreau P, Lessire R, Cassagne C (1998) Recent advances in plant fatty acid elongation. In: Harwood JL (ed) Plant lipid biosynthesis: fundamentals and agricultural applications. Cambridge University Press, Cambridge, pp 185–222

    Google Scholar 

  • Ebert E (1980) Herbicidal effects of metolachlor (2 chloro-N-[2-ethyl-6-methylphenyl]-N-[2methoxy-1-methylethyl]acetamide) at a cellular level in sorghum. Pestic Biochem Physiol 13:227–236

    Article  CAS  Google Scholar 

  • Ebert E, Ramsteiner K (1984) Influence of metolachlor and the metolachlor protectant CGA 43089 on the biosynthesis of epicuticular waxes and the primary leaves of Sorghum bicolor Moench. Weed Res 24:383–389

    Article  CAS  Google Scholar 

  • Fedtke C (1982) Modes of herbicide action as determined with Chlamydomonas reinhardii and Coulter counting. In: Moreland DE, St John JB, Hess FD (eds) Biochemical responses induced by herbicides. ACS Ser 181, Am Chem Soc, Washington, DC, pp 231–250

    Chapter  Google Scholar 

  • Fehling E, Lessire R, Cassagne C, Mukherjee KD (1992) Solubilization and partial purification of constituents of acyl-CoA elongase from Lunaria annua. Biochim Biophys Acta 1126:88–94

    PubMed  CAS  Google Scholar 

  • Fuerst EP (1987) Understanding the mode of action of the chloroacetamide and thiocarbamate herbicides. Weed Technol 1:270–277

    CAS  Google Scholar 

  • Fuerst EP, Lamoureux GL, Ahrens WH (1991) Mode of action of the dichloroacetamide antidote BAS 145–138 in corn. I. Growth responses and fate of metazachlor. Pestic Biochem Physiol 39:138–148

    Article  CAS  Google Scholar 

  • Hamm PC (1974) Discovery, development, and current status of the chloroacetamide herbicides. Weed Sci 22:541–545

    Google Scholar 

  • Huang BQ, Gressel J (1997) Barnyardgrass (Echinochloa crus-galli) resistance to both butachlor and thiobencarb in China. Resist Pestic Manage 9:5–7

    Google Scholar 

  • James Jr DW, Lim E, Keller J, Plooy I, Ralston E, Dooner HK (1995) Directed tagging of the Arabidopsis fatty acid elongation l(FAEI) gene with the maize transposon activator. Plant Cell 7:309–319

    Article  PubMed  CAS  Google Scholar 

  • Jaworski EJ (1956) biochemical action of CDAA, a new herbicide. Science 123:847–848

    Article  PubMed  CAS  Google Scholar 

  • Jepson I, Holt DC, Roussel V, Wright SY, Greenland AJ (1997) Transgenic plant analysis as a tool for the study of maize glutathione S-transferases. In: Hatzios KK (ed) Regulation of enzymatic systems detoxifying xenobiotics in plants. Kluwer, Dordrecht, pp 313–323

    Google Scholar 

  • Kern AJ, Jackson LL, Dyer WE (1997) Fatty acid and wax biosynthesis in susceptible and triallate-resistant Avena fatua L. Pestic Sci 51:21–26

    Article  CAS  Google Scholar 

  • Kring F, Couderchet M, Böger P (1995) Inhibition of oleic acid incorporation into a non-lipid fraction by chloroacetamide herbicides. Physiol Plant 95:551–558

    Article  CAS  Google Scholar 

  • Lassner MW, Lardizabal K, Metz JG (1996) A jojoba β-ketoacyl-CoA synthase cDNA complements the canola fatty acid elongation mutation in transgenic plants. Plant Cell 8:281–292

    Article  PubMed  CAS  Google Scholar 

  • Leavitt JRC, Penner D (1979) In vitro conjugation of glutathione and other thiols with acetanilide herbicides and EPTC sulfoxide and the action of the herbicide antidote R-25788. J Agric Food Chem 27:533–536

    Article  CAS  Google Scholar 

  • LeBaron HM, McFarland JE, Simoneaux BJ (1988) Metolachlor. In: Kearney PC, Kaufman DD (eds) Herbicides - chemistry, degradation and mode of action. Dekker, New York, pp 335–382

    Google Scholar 

  • Mann JD, Pu M (1968) Inhibition of lipid biosynthesis by certain herbicides. Weed Sci 22:197–198

    Google Scholar 

  • Matthes B, Schmalfuß J, Böger P (1998) Chloroacetamide mode of action. II. Inhibition of very long chain fatty acid synthesis in higher plants. Z Naturforsch 53c:1004–1011

    Google Scholar 

  • Matthes B (2000) Die Wirkungsweise herbizidaler Chloracetamide. PhD Thesis, University of Konstanz

    Google Scholar 

  • McFarland JE, Hess FD (1986) Chloroacetamide herbicides alkylate plant proteins. Weed Sci Soc Am (WSSA) Abstr Book 26:81

    Google Scholar 

  • Mellis JM, Pillai P, Davis DE, Truelove B (1982) Metolachlor and alachlor effects on membrane permeability and lipid synthesis. Weed Sci 30:399–404

    CAS  Google Scholar 

  • Millar AA, Kunst L (1997) Very-long-chain fatty acid biosynthesis is controlled through the expression and specificity of the condensing enzyme. Plant J 12:121–131

    Article  PubMed  CAS  Google Scholar 

  • Millar AA, Clemens S, Zachgo S, Giblin EM, Taylor DC, Kunst L (1999) CUTI, an Arabidopsis gene required for cuticular wax biosynthesis and pollen fertility, encodes a very-long-chain fatty acid condensing enzyme. Plant Cell 11:825–838

    Article  PubMed  CAS  Google Scholar 

  • Möllers C, Albrecht, S (1994) Screening herbicide effects on lipid metabolism of storage lipids by in vitro culture of microspore-derived embryoids of Brassica nap us. J Plant Physiol 144: 376–384

    Google Scholar 

  • Molin WT, Anderson EJ, Porter CA (1986) Effects of alachlor on anthocyanin and lignin synthesis in etiolated sorghum (Sorghum bicolor (L.) Moench) mesocotyls. Pestic Biochem Physiol 25:105–111

    Article  CAS  Google Scholar 

  • Moreau P, Bessoule S, Mongrand S, Testet P, Cassagne C (1998) Lipid trafficking in plant cells. Prog Lipid Res 37:371–391

    Article  PubMed  CAS  Google Scholar 

  • Moreland DE, Corbin FT, Fleischmann, TJ, McFarland JE (1995) Partial characterization of micro-somes isolated from mung bean cotyledons. Pestic Biochem Physiol 52:98–108

    Article  CAS  Google Scholar 

  • Murata N, Sato N, Takahashi N (1984) Very-long chain saturated fatty acids in phosphatidyl-serine from higher plant tissues. Biochim Biophys Acta 795:147–150

    CAS  Google Scholar 

  • Narsaiah DB, Harvey RG (1977) Alachlor placement in the soil as related to phytotoxicity to maize (Zea mays L.) and soybean (Glycine max. L.) seedlings. Weed Res 17:163–168

    Article  Google Scholar 

  • Ohlrogge JB, Jaworski JG (1997) Regulation of fatty acid synthesis. Annu Rev Plant Physiol Plant Mol Biol 48:109–136

    Article  PubMed  CAS  Google Scholar 

  • Poulos A (1995) Very long chain fatty acids in higher animals - a review. Lipids 30:1–14

    Article  PubMed  CAS  Google Scholar 

  • Renault S, Shukla A, Giblin M, MacKenzie SL, Devine MD (1997) Plasma membrane lipid composition and herbicide effects on lipoxygenase activity do not contribute to differential membrane responses in herbicide-resistant and -susceptible wild oat (Avena fatua L.) biotypes. J Agric Food Chem 45:3269–3275

    Article  CAS  Google Scholar 

  • Schmalfuß J, Matthes B, Mayer P, Böger P (1998) Chloroacetamide mode of action. I. Inhibition of very long chain fatty acid synthesis in Scenedesmus acutus. Z Naturforsch 53c:995–1003

    Google Scholar 

  • Schmalfuß J, Matthes B, Knuth K, Böger P (2000) Inhibition of acyl-CoA elongation by chloroac-etamide herbicides in microsomes from leek seedlings. Pestic Biochem Physiol 67:25–35

    Article  Google Scholar 

  • Sharp DB (1988) Alachlor. In: Kearney PC, Kaufman DD (eds) Herbicides - chemistry, degradation and mode of action. Dekker, New York, pp 301–333

    Google Scholar 

  • Sloan ME, Camper ND (1985) Effects of alachlor and metolachlor on cucumber seedlings. Environ Exp Bot 26:1–7

    Article  Google Scholar 

  • Sommer A, Böger P (1999) Characterization of recombinant corn glutathione S-transferase isoforms I, II, III, and IV. Pestic Biochem Physiol 63:127–138

    Article  CAS  Google Scholar 

  • Tevini M, Steinmüller D (1987) Influence of light, UV-B radiation, and herbicides on wax biosynthesis of cucumber seedlings. J Plant Physiol 131:111–121

    CAS  Google Scholar 

  • Todd J, Post-Beittenmiller D, Jaworski JG (1999) KCS1encodes a fatty acid elongase 3-ketoacylCoA synthase affecting wax biosynthesis in Arabidopsis thaliana. Plant J 17:119–130

    Article  PubMed  CAS  Google Scholar 

  • Uemura M, Joseph RA, Steponkus PL (1995) Cold acclimation of Arabidopsis thaliana. Plant Physiol 109:15–30

    PubMed  CAS  Google Scholar 

  • Vavrina CS, Ashley RA (1983) Effect of alachlor on PEG6000 uptake, root osmotic potential, and root leakage. Weed Sci 31:600–603

    CAS  Google Scholar 

  • Weisshaar H, Böger P (1987) Primary effects of chloroacetamides. Pestic Biochem Physiol 28: 286–293

    Article  CAS  Google Scholar 

  • Wettstein-Knowles PM von (1993) Waxes, cutin and suberin. In: Moore TS (ed) Lipid metabolism in plants. CRC Press, Boca Raton, pp 127–166

    Google Scholar 

  • Wilkinson RE (1981) Metolachor influence on growth and terpenoid synthesis. Pestic Biochem Physiol 16:63–71

    Article  CAS  Google Scholar 

  • Wilmesmeier S, Steuernagel S, Wiermann R (1993) Comparative FTIR and 13C CP/MAS NMR spectroscopic investigations on sporopollenin of different systematic origin. Z Naturforsch 48c:697–701

    Google Scholar 

  • Wu J, Hwang IT, Hatzios KK (1999) Effects of chloroacetanilide herbicides on membrane fatty acid desaturation and lipid composition in rice, maize and sorghum. Pestic Biochem Physiol 66:161–169

    Article  Google Scholar 

  • Zama P, Hatzios KK (1987) Interaction between the herbicide metolachlor and the safener CGA92194 at the levels of uptake and macromolecular synthesis in sorghum leaf protoplasts. Pestic Biochem Physiol 27:86–96

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Böger, P., Matthes, B. (2002). Inhibitors of Biosynthesis of Very-Long-Chain Fatty Acids. In: Böger, P., Wakabayashi, K., Hirai, K. (eds) Herbicide Classes in Development. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59416-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59416-8_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63972-2

  • Online ISBN: 978-3-642-59416-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics