Skip to main content

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 268))

Abstract

The adaptive immune system has evolved in higher vertebrates to defend them efficiently against infections and perhaps also against cancer. Cytotoxic T lymphocytes (CTLs) represent one major type of antigen-specific immunocyte. CTL recognize peptides from infectious agents and tumor antigens bound to major histocompatibility complex (MHC) class I molecules, and lyse cells that display such MHC class I/peptide complexes at the cell surface. MHC class I-binding peptides are derived through the continuous proteolysis of polypeptides that are synthesized in the cytosol or reach the cytosol in other ways. Suitable peptides bind to the transporter associated with antigen processing (TAP) for translocation into the endoplasmic reticulum (ER), and peptides with an appropriate motif bind to newly synthesized MHC class I molecules. The newly formed MHC class I—peptide complexes then travel to the cell surface for recognition by CTLs (Fig. 1). Because the peptides preferred by TAP are the same size as those presented by the MHC class I molecules or are somewhat longer, the major steps in MHC class I antigen processing can be expected to occur in the cytosol. Proteasomes are highly abundant cytosolic and nuclear protease complexes that degrade most intracellular proteins in higher eukaryotes and appear to play the major role in the cytosolic steps of MHC class I antigen processing. This review summarizes the present knowledge of the role of proteasomes in antigen processing and the impact of proteasomal proteolysis on T cell-mediated immunity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahn K, Erlander M, Leturcq D, Peterson PA, Fruh K, Yang Y (1996) In vivo characterization of the proteasome regulator PA28. J Biol Chem 271:18237–18242

    PubMed  CAS  Google Scholar 

  • Aki M, Shimbara N, Takashina M, Akiyama K, Kagawa S, Tamura T, Tanahashi N, Yoshimura T, Tanaka K, Ichihara A (1994) Interferon-gamma induces different subunit organizations and functional diversity of proteasomes. J Biochem 115:257–269

    PubMed  CAS  Google Scholar 

  • Akopian TN, Kisselev AF, Goldberg AL (1997) Processive degradation of proteins and other catalytic properties of the proteasome from Thermoplasma acidophilum. J Biol Chem 272:1791–1798

    PubMed  CAS  Google Scholar 

  • Altuvia Y, Margalit H (2000) Sequence signals for generation of antigenic peptides by the proteasome: implications for proteasomal cleavage mechanism. J Mol Biol 295:879–890

    PubMed  CAS  Google Scholar 

  • Arendt CS, Hochstrasser M (1997) Identification of the yeast 20S proteasome catalytic centers and subunit interactions required for active-site formation. Proc Natl Acad Sci USA 94:7156–7161

    PubMed  CAS  Google Scholar 

  • Arnold D, Driscoll J, Androlewicz M, Hughes E, Cresswell P, Spies T (1992) Proteasome subunits encoded in the MHC are not generally required for the processing of peptides bound by MHC class I molecules. Nature 360:171–174

    PubMed  CAS  Google Scholar 

  • Bai A, Forman J (1997) The effect of the proteasome inhibitor lactacystin on the presentation of transporter associated with antigen processing (TAP)-dependent and TAP-independent peptide epitopes by class I molecules. J Immunol 159:2139–2146

    PubMed  CAS  Google Scholar 

  • Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392:245–252

    PubMed  CAS  Google Scholar 

  • Baumeister W, Walz J, Zuhl F, Seemüller E (1998) The proteasome: paradigm of a self-compartmen-talizing protease. Cell 92:367–380

    PubMed  CAS  Google Scholar 

  • Beekman NJ, van Veelen PA, van Hall T, Neisig A, Sijts A, Camps M, Kloetzel PM, Neefjes JJ, Melief CJ, Ossendorp F (2000) Abrogation of CTL epitope processing by single amino acid substitution flanking the C-terminal proteasome cleavage site. J Immunol 164:1898–1905

    PubMed  CAS  Google Scholar 

  • Ben-Shahar S, Cassouto B, Novak L, Porgador A, Reiss Y (1997) Production of a specific major histocompatibility complex class I-restricted epitope by ubiquitin-dependent degradation of modified ovalbumin in lymphocyte lysate. J Biol Chem 272:21060–21066

    PubMed  CAS  Google Scholar 

  • Benham AM, Gromme M, Neefjes J (1998) Allelic differences in the relationship between proteasome activity and MHC class I peptide loading. J Immunol 161:83–89

    PubMed  CAS  Google Scholar 

  • Beninga J, Rock KL, Goldberg AL (1998) Interferon-gamma can stimulate post-proteasomal trimming of the N terminus of an antigenic peptide by inducing leucine aminopeptidase. J Biol Chem 273:18734–18742

    Google Scholar 

  • Bochtler M, Ditzel L, Groll M, Hartmann C, Huber R (1999) The proteasome. Ann Rev Biophys Biomol Struct 28:295–317

    CAS  Google Scholar 

  • Bodmer JG, Marsh SG, Albert ED, Bodmer WF, Bontrop RE, Charron D, Dupont B, Erlich HA, Fauchet R, Mach B, Mayr WR, Parham P, Sasazuki T, Schreuder GM, Strominger JL, Svejgaard A, Terasaki PI (1997) Nomenclature for factors of the HLA system, 1996. Tissue Antigens 49: 297–321

    PubMed  CAS  Google Scholar 

  • Boehm U, Klamp T, Groot M, Howard JC (1997) Cellular responses to interferon-gamma. Annu Rev Immunol 15:749–795

    PubMed  CAS  Google Scholar 

  • Boes B, Hengel H, Ruppert T, Multhaup G, Koszinowski UH, Kloetzel PM (1994) Interferon gamma stimulation modulates the proteolytic activity and cleavage site preference of 20S mouse proteasomes. J Exp Med 179:901–909

    PubMed  CAS  Google Scholar 

  • Bogyo M, McMaster JS, Gaczynska M, Tortorella D, Goldberg AL, Ploegh H (1997) Covalent modification of the active site threonine of proteasomal beta subunits and the Escherichia coli homolog HslV by a new class of inhibitors. Proc Natl Acad Sci USA 94:6629–6634

    PubMed  CAS  Google Scholar 

  • Bogyo M, Shin S, McMaster JS, Ploegh HL (1998) Substrate binding and sequence preference of the proteasome revealed by active-site-directed affinity probes. Chem Biol 5:307–320

    PubMed  CAS  Google Scholar 

  • Boon T, Van Pel A (1989) T cell-recognized antigenic peptides derived from the cellular genome are not protein degradation products but can be generated directly by transcription and translation of short subgenic regions. A hypothesis [see comments], Immunogenetics 29:75–79

    PubMed  CAS  Google Scholar 

  • Breloer M, Marti T, Fleischer B, von Bonin A (1998) Isolation of processed, H-2Kb-binding ovalbumin-derived peptides associated with the stress proteins HSP70 and gp96. Eur J Immunol 28:1016–1021

    PubMed  CAS  Google Scholar 

  • Cardozo C, Vinitsky A, Michaud C, Orlowski M (1994) Evidence that the nature of amino acid residues in the P3 position directs substrates to distinct catalytic sites of the pituitary multicatalytic proteinase complex (proteasome). Biochemistry 33:6483–6489

    PubMed  CAS  Google Scholar 

  • Cardozo C, Chen WE, Wilk S (1996) Cleavage of Pro-X and Glu-X bonds catalyzed by the branched chain amino acid preferring activity of the bovine pituitary multicatalytic proteinase complex (20S proteasome). Arch Biochem Biophys 334:113–120

    PubMed  CAS  Google Scholar 

  • Cardozo C, Kohanski RA (1998) Altered properties of the branched chain amino acid-preferring activity contribute to increased cleavages after branched chain residues by the ‘immunoproteasome’. J Biol Chem 273:16764–16770

    PubMed  CAS  Google Scholar 

  • Cerundolo V, Kelly A, Elliott T, Trowsdale J, Townsend A (1995) Genes encoded in the major histocompatibility complex affecting the generation of peptides for TAP transport [published erratum appears in Eur J Immunol 1995 25:1485]. Eur J Immunol 25:554–562

    PubMed  CAS  Google Scholar 

  • Cerundolo V, Benham A, Braud V, Mukherjee S, Gould K, Macino B, Neefjes J, Townsend A (1997) The proteasome-specific inhibitor lactacystin blocks presentation of cytotoxic T lymphocyte epitopes in human and murine cells. Eur J Immunol 27:336–341

    PubMed  CAS  Google Scholar 

  • Chisari FV, Ferrari C (1995) Hepatitis B virus immunopathogenesis. Annu Rev Immunol 13:29–60

    PubMed  CAS  Google Scholar 

  • Ciechanover A, Orian A, Schwartz AL (2000) Ubiquitin-mediated proteolysis: biological regulation via destruction. Bioessays 22:442–451

    PubMed  CAS  Google Scholar 

  • Coux O, Tanaka K, Goldberg AL (1996) Structure and functions of the 20S and 26S proteasomes. Annu Rev Biochem 65:801–847

    PubMed  CAS  Google Scholar 

  • Craiu A, Akopian T, Goldberg A, Rock KL (1997a) Two distinct proteolytic processes in the generation of a major histocompatibility complex class I-presented peptide. Proc Natl Acad Sci USA 94:10850–10855

    PubMed  CAS  Google Scholar 

  • Craiu A, Gaczynska M, Akopian T, Gramm CF, Fenteany G, Goldberg AL, Rock KL (1997b) Lactacystin and clasto-lactacystin beta-lactone modify multiple proteasome beta-subunits and inhibit intracellular protein degradation and major histocompatibility complex class I antigen presentation. J Biol Chem 272:13437–13445

    PubMed  CAS  Google Scholar 

  • Daniel S, Brusic V, Caillat-Zucman S, Petrovsky N, Harrison L, Riganelli D, Sinigaglia F, Gallazzi F, Hammer J, Van Endert PM (1998) Relationship between peptide selectivities of human transporters associated with antigen processing and HLA class I molecules. J Immunol 161:617–624

    PubMed  CAS  Google Scholar 

  • Dick LR, Moomaw CR, DeMartino GN, Slaughter CA (1991) Degradation of oxidized insulin B chain by the multiproteinase complex macropain (proteasome). Biochemistry 30:2725–2734

    PubMed  CAS  Google Scholar 

  • Dick LR, Aid rich C, Jameson SC, Moomaw CR, Pramanik BC, Doyle CK, DeMartino GN, Bevan MJ, Forman JM, Slaughter CA (1994) Proteolytic processing of ovalbumin and beta-galactosidase by the proteasome to a yield antigenic peptides. J Immunol 152:3884–3894

    PubMed  CAS  Google Scholar 

  • Dick TP, Ruppert T, Groettrup M, Kloetzel PM, Kuehn L, Koszinowski UH, Stevanovic, S, Schild H, Rammensee HG (1996) Coordinated dual cleavages induced by the proteasome regulator PA28 lead to dominant MHC ligands. Cell 86:253–262

    PubMed  CAS  Google Scholar 

  • Dick TP, Nussbaum AK, Deeg M, Heinemeyer W, Groll M, Schirle M, Keilholz W, Stevanovic S, Wolf DH, Huber R, Rammensee HG, Schild H (1998a) Contribution of proteasomal beta-subunits to the cleavage of peptide substrates analyzed with yeast mutants. J Biol Chem 273:25637–25646

    PubMed  CAS  Google Scholar 

  • Dick TP, Stevanovic S, Keilholz W, Ruppert T, Koszinowski U, Schild H, Rammensee HG (1998b) The making of the dominant MHC class I ligand SYFPEITHI. Eur J Immunol 28:2478–2486

    PubMed  CAS  Google Scholar 

  • Ditzel L, Huber R, Mann K, Heinemeyer W, Wolf DH, Groll M (1998) Conformational constraints for protein self-cleavage in the proteasome. J Mol Biol 279:1187–1191

    PubMed  CAS  Google Scholar 

  • Ditzel L, Stock D, Lowe J (1997) Structural investigation of proteasome inhibition. Biol Chem 378: 239–247

    PubMed  CAS  Google Scholar 

  • Dolenc I, Seemüller E, Baumeister W (1998) Decelerated degradation of short peptides by the 20S proteasome. FEBS Lett 434:357–361

    PubMed  CAS  Google Scholar 

  • Driscoll J, Brown MG, Finley D, Monaco JJ (1993) MHC-linked LMP gene products specifically alter peptidase activities of the proteasome [see comments]. Nature 365:262–264

    PubMed  CAS  Google Scholar 

  • Dubiel W, Pratt G, Ferrell K, Rechsteiner M (1992) Purification of an 1 IS regulator of the multicatalytic protease. J Biol Chem 267:22369–22377

    PubMed  CAS  Google Scholar 

  • Dubiel W and Kloetzel PM (2000) The 20S proteasome activator PA28 or 1 IS regulator. In: Hilt W, Wolf DH (eds) The world of regulatory proteolysis. Eureka.com/Landes Bioscience, Georgetown, pp 129–136

    Google Scholar 

  • Eggers M, Boes-Fabian B, Ruppert T, Kloetzel PM, Koszinowski UH (1995) The cleavage preference of the proteasome governs the yield of antigenic peptides. J Exp Med 182:1865–1870

    PubMed  CAS  Google Scholar 

  • Ehring B, Meyer TH, Eckerskorn C, Lottspeich F, Tampe R (1996) Effects of major-histocompatibility-complex-encoded subunits on the peptidase and proteolytic activities of human 20S proteasomes. Cleavage of proteins and antigenic peptides. Eur J Biochem 235:404–415

    PubMed  CAS  Google Scholar 

  • Eisenlohr LC, Bacik I, Bennink JR, Bernstein K, Yewdell JW (1992) Expression of a membrane protease enhances presentation of endogenous antigens to MHC class I-restricted T lymphocytes. Cell 71: 963–972

    PubMed  CAS  Google Scholar 

  • Eleuteri AM, Kohanski RA, Cardozo C, Orlowski M (1997) Bovine spleen multicatalytic proteinase complex (proteasome). Replacement of X, Y, and Z subunits by LMP7, LMP2, and MECL1 and changes in properties and specificity. J Biol Chem 272:11824–11831

    PubMed  CAS  Google Scholar 

  • Elliott T, Willis A, Cerundolo V, Townsend A (1995) Processing of major histocompatibility class I-restricted antigens in the endoplasmic reticulum. J Exp Med 181:1481–1491

    PubMed  CAS  Google Scholar 

  • Emmerich NPN, Nussbaum AK, Stevanovic S, Priemer M, Toes REM, Rammensee HG, Schild HJ (2000) The human 26S and 20S proteasomes generate overlapping but different sets of peptide fragments from a model protein substrate. J Biol Chem 275:21140–21148

    PubMed  CAS  Google Scholar 

  • Enenkel C, Lehmann H, Kipper J, Guckel R, Hilt W, Wolf DH (1994) PRE3, highly homologous to the human major histocompatibility complex-linked LMP2 (RING 12) gene, codes for a yeast proteasome subunit necessary for the peptidylglutamyl-peptide hydrolyzing activity. FEBS Lett 341:193–196

    PubMed  CAS  Google Scholar 

  • Enenkel C, Lehmann A, Kloetzel PM (1998) Subcellular distribution of proteasomes implicates a major location of protein degradation in the nuclear envelope-ER network in yeast. EMBO J 17:6144–6154

    PubMed  CAS  Google Scholar 

  • Fehling HJ, Swat W, Laplace C, Kuhn R, Rajewsky K, Muller U, von Boehmer H (1994) MHC class I expression in mice lacking the proteasome subunit LMP-7. Science 265:1234–1237

    PubMed  CAS  Google Scholar 

  • Frisan T, Levitsky V, Polack A, Masucci MG (1998) Phenotype-dependent differences in proteasome subunit composition and cleavage specificity in B cell lines. J Immunol 160:3281–3289

    PubMed  CAS  Google Scholar 

  • Gaczynska M, Rock KL, Goldberg AL (1993) Gamma-interferon and expression of MHC genes regulate peptide hydrolysis by proteasomes [see comments] [published erratum appears in Nature 1995 374(6519):290]. Nature 365:264–267

    PubMed  CAS  Google Scholar 

  • Gaczynska M, Goldberg AL, Tanaka K, Hendil KB, Rock KL (1996) Proteasome subunits X and Y alter peptidase activities in opposite ways to the interferon-gamma-induced subunits LMP2 and LMP7. J Biol Chem 271:17275–17280

    PubMed  CAS  Google Scholar 

  • Geier E, Pfeifer G, Wilm M, Lucchiari-Hartz M, Baumeister W, Eichmann K, Niedermann G (1999) A giant protease with potential to substitute for some functions of the proteasome. Science 283:978–981

    PubMed  CAS  Google Scholar 

  • Gileadi U, Moins-Teisserenc HT, Correa I, Booth BL Jr., Dunbar PR, Sewell AK, Trowsdale J, Phillips RE, Cerundolo V (1999) Generation of an immunodominant CTL epitope is affected by proteasome subunit composition and stability of the antigenic protein. J Immunol 163:6045–6052

    PubMed  CAS  Google Scholar 

  • Gomard E, Sitbon M, Toubert A, Begue B, Levy JP (1984) HLA-B27, a dominant restricting element in antiviral responses? Immunogenetics 20:197–204

    PubMed  CAS  Google Scholar 

  • Goulder PJ, Phillips RE, Colbert RA, McAdam S, Ogg G, Nowak MA, Giangrande P, Luzzi G, Morgan B, Edwards A, McMichael AJ, Rowland-Jones S (1997) Late escape from an immunodominant cytotoxic T-lymphocyte response associated with progression to AIDS. Nature Med 3:212–217

    PubMed  CAS  Google Scholar 

  • Gray CW, Slaughter CA, DeMartino GN (1994) PA28 activator protein forms regulatory caps on proteasome stacked rings. J Mol Biol 236:7–15

    PubMed  CAS  Google Scholar 

  • Griffin TA, Nandi D, Cruz M, Fehling HJ, Kaer LV, Monaco JJ, Colbert RA (1998) Immunoproteasome assembly: cooperative incorporation of interferon gamma (IFN-gamma)-inducible subunits. J Exp Med 187:97–104

    PubMed  CAS  Google Scholar 

  • Groettrup M, Ruppert T, Kuehn L, Seeger M, Standera S, Koszinowski U, Kloetzel PM (1995) The interferon-gamma-inducible 1 IS regulator (PA28) and the LMP2/LMP7 subunits govern the peptide production by the 20S proteasome in vitro. J Biol Chem 270:23808–23815

    PubMed  CAS  Google Scholar 

  • Groettrup M, Soza A, Eggers M, Kuehn L, Dick TP, Schild H, Rammensee HG, Koszinowski UH, Kloetzel PM (1996a) A role for the proteasome regulator PA28alpha in antigen presentation. Nature 381:166–168

    PubMed  CAS  Google Scholar 

  • Groettrup M, Soza A, Kuckelkorn U, Kloetzel PM (1996b) Peptide antigen production by the proteasome: complexity provides efficiency. Immunol Today 17:429–435

    PubMed  CAS  Google Scholar 

  • Groettrup M, Standera S, Stohwasser R, Kloetzel PM (1997) The subunits MECL-1 and LMP2 are mutually required for incorporation into the 20S proteasome. Proc Natl Acad Sci USA 94:8970–8975

    PubMed  CAS  Google Scholar 

  • Groll M, Ditzel L, Lowe J, Stock D, Bochtler M, Bartunik HD, Huber R (1997) Structure of 20S proteasome from yeast at 2.4A resolution [see comments]. Nature 386:463–471

    PubMed  CAS  Google Scholar 

  • Gruñe T, Reinheckel T, Davies KJ (1997) Degradation of oxidized proteins in mammalian cells. FASEB Journal 11:526–534

    PubMed  Google Scholar 

  • Harrer T, Harrer E, Barbosa P, Kaufmann F, Wagner R, Bruggemann S, Kalden JR, Feinberg M, Johnson RP, Buchbinder S, Walker BD (1998) Recognition of two overlapping CTL epitopes in HIV-1 pi7 by CTL from a long-term nonprogressing HIV-1-infected individual. J Immunol 161:4875–4881

    PubMed  CAS  Google Scholar 

  • Harris CA, Hunte B, Krauss MR, Taylor A, Epstein LB (1992) Induction of leucine aminopeptidase by interferon-gamma. Identification by protein microsequencing after purification by preparative two-dimensional gel electrophoresis. J Biol Chem 267:6865–6869

    PubMed  CAS  Google Scholar 

  • Heinemeyer W, Gruhler A, Mohrle V, Mahe Y, Wolf DH (1993) PRE2, highly homologous to the human major histocompatibility complex-linked RING 10 gene, codes for a yeast proteasome subunit necessary for chrymotryptic activity and degradation of ubiquitinated proteins. J Biol Chem 268:5115–5120

    PubMed  CAS  Google Scholar 

  • Heinemeyer W, Fischer M, Krimmer T, Stachon U, Wolf DH (1997) The active sites of the eukaryotic 20S proteasome and their involvement in subunit precursor processing. J Biol Chem 272:25200–25209

    PubMed  CAS  Google Scholar 

  • Hendil KB, Khan S, Tanaka K (1998) Simultaneous binding of PA28 and PA700 activators to 20S proteasomes. Biochem J 332:749–754

    PubMed  Google Scholar 

  • Hirsch C, Ploegh HL (2000) Intracellular targeting of the proteasome. Trends Cell Biol 10:268–271

    PubMed  CAS  Google Scholar 

  • Howard JC (1995) Supply and transport of peptides presented by class I MHC molecules. Curr Opin Immunol 7:69–76

    PubMed  CAS  Google Scholar 

  • Huczko EL, Bodnar WM, Benjamin D, Sakaguchi K, Zhu NZ, Shabanowitz J, Henderson RA, Appella E, Hunt DF, Engelhard VH (1993) Characteristics of endogenous peptides eluted from the class I MHC molecule HLA-B7 determined by mass spectrometry and computer modeling. J Immunol 151:2572–2587

    PubMed  CAS  Google Scholar 

  • Ishii T, Udono H, Yamano T, Ohta H, Uenaka A, Ono T, Hizuta A, Tanaka N, Srivastava PK. Nakayama E (1999) Isolation of MHC class I-restricted tumor antigen peptide and its precursors associated with heat shock proteins hsp70, hsp90, and gp96. J Immunol 162:1303–1309

    CAS  Google Scholar 

  • Kärre K (1997) NK cells, MHC class I antigens and missing self. Immunol Rev 155:5–221

    PubMed  Google Scholar 

  • Kasahara M (1998) What do the paralogous regions in the genome tell us about the origin of the adaptive immune system? Immunol Rev 166:159–175

    PubMed  CAS  Google Scholar 

  • Kaslow RA, Carrington M, Apple R, Park L, Munoz A, Saah AJ, Goedert JJ, Winkler C, O’Brien SJ, Rinaldo C, Detels R, Blattner W, Phair J, Erlich H, Mann DL (1996) Influence of combinations of human major histocompatibility complex genes on the course of HIV-1 infection [see comments]. Nature Med 2:405–411

    PubMed  CAS  Google Scholar 

  • Kaufman J, Wallny HJ (1996) Chicken MHC molecules, disease resistance and the evolutionary origin of birds. Curr Top Microbiol Immunol 212:129–141

    PubMed  CAS  Google Scholar 

  • Kisselev AF, Akopian TN, Woo KM, Goldberg AL (1999) The sizes of peptides generated from protein by mammalian 26 and 20S proteasomes. Implications for understanding the degradativermechanism and antigen presentation. J Biol Chem 274:3363–3371

    PubMed  CAS  Google Scholar 

  • Klein L, Kyewski B (2000) Self-antigen presentation by thymic stromal cells: a subtle division of labor. Curr Opin Immunol 12:179–186

    PubMed  CAS  Google Scholar 

  • Knowlton JR, Johnston SC, Whitby FG, Realini C, Zhang Z, Rechsteiner M, Hill CP (1997) Structure of the proteasome activator REGalpha (PA28alpha). Nature 390:639–643

    PubMed  CAS  Google Scholar 

  • Koopmann JO, Post M, Neefjes J J, Hammerling GJ, Momburg F (1996) Translocation of long peptides by transporters associated with antigen processing (TAP). Eur J Immunol 26:1720–1728

    PubMed  CAS  Google Scholar 

  • Kopito RR (1997) ER quality control: the cytoplasmic connection. Cell 88:427–430

    PubMed  CAS  Google Scholar 

  • Korber BTM, Brander C, Moore JP, Walker BD, Koup R, Haynes BF (1997) HIV Molecular Immunology Database (Los Alamos National Laboratory, Theoretical Biology and Biophysics, Los Alamos, New Mexico)

    Google Scholar 

  • Kuckelkorn U, Frentzel S, Kraft R, Kostka S, Groettrup M, Kloetzel PM (1995) Incorporation of major histocompatibility complex-encoded subunits LMP2 and LMP7 changes the quality of the 20S proteasome polypeptide processing products independent of interferon-gamma. Eur J Immunol 25:2605–2611

    PubMed  CAS  Google Scholar 

  • Langman R (2000) Self-nonself-discrimination revisited. Semin Immunol 12:159–344

    PubMed  CAS  Google Scholar 

  • Lauvau GKK, Niedermann G, Ostankovitch M, Yotnda P, Firat H, Chisari FV, and van Endert PM (1999) Human transporters associated with antigen processing (TAPs) select epitope precursor peptides for processing in the endoplasmic reticulum and presentation to T cells. J Exp Med 190:1227–1240

    PubMed  CAS  Google Scholar 

  • Levitskaya J, Sharipo A, Leonchiks A, Ciechanover A, Masucci MG (1997) Inhibition of ubiquitin/ proteasome-dependent protein degradation by the Gly-Ala repeat domain of the Epstein-Barr virus nuclear antigen 1. Proc Natl Acad Sci USA 94:12616–12621

    PubMed  CAS  Google Scholar 

  • Lin L, Ghosh S (1996) A glycine-rich region in NF-κB pi05 functions as a processing signal for the generation of the p50 subunit. Mol Cell Biol 16:2248–2254

    PubMed  CAS  Google Scholar 

  • Lobigs M, Mullbacher A (1993) Recognition of vaccinia virus-encoded major histocompatibility complex class I antigens by virus immune cytotoxic T cells is independent of the polymorphism of the peptide transporters. Proc Natl Acad Sci USA 90:2676–2680

    PubMed  CAS  Google Scholar 

  • Lord JM, Davey J, Frigerio L, Roberts LM (2000) Endoplasmic reticulum-associated protein degradation. Semin Cell Devel Biol 11:159–164

    CAS  Google Scholar 

  • Lucchiari-Hartz M, van Endert P, Lauvau G, Mayer R, Meyerhans A, Eichmann K, Niedermann G (2000) CTL-epitopes of HIV-l-Nef: generation of multiple definitive epitopes by proteasomes. J Exp Med 191:239–252

    PubMed  CAS  Google Scholar 

  • Ma CP, Slaughter CA, DeMartino GN (1992) Identification, purification, and characterization of a protein activator (PA28) of the 20S proteasome (macropain). J Biol Chem 267:10515–10523

    PubMed  CAS  Google Scholar 

  • Macagno A, Gilliet M, Sallusto F, Lanzavecchia A, Nestle FO, Groettrup M (1999) Dendritic cells up-regulate immunoproteasomes and the proteasome regulator PA28 during maturation. Eur J Immunol 29:4037–4042

    PubMed  CAS  Google Scholar 

  • Madden DR (1995) The three-dimensional structure of peptide-MHC complexes. Annu Rev Immunol 13:587–622

    PubMed  CAS  Google Scholar 

  • Malarkannan S, Horng T, Shih PP, Schwab S, Shastri N (1999) Presentation of out-of-frame peptide/MHC class I complexes by a novel translation initiation mechanism. Immunity 10:681–690

    PubMed  CAS  Google Scholar 

  • Mayrand SM, Green WR (1998) Non-traditionally derived CTL epitopes: exceptions that prove the rules? Immunol Today 19:551–556

    PubMed  CAS  Google Scholar 

  • McCormack TA, Cruikshank AA, Grenier L, Melandri FD, Nunes SL, Plamondon L, Stein RL, Dick LR (1998) Kinetic studies of the branched chain amino acid preferring peptidase activity of the 20S proteasome: development of a continuous assay and inhibition by tripeptide aldehydes and clasto-lactacystin beta-lactone. Biochemistry 37:7792–7800

    PubMed  CAS  Google Scholar 

  • McCusker D, Wilson M, Trowsdale J (1999) Organization of the genes encoding the human proteasome activators PA28 alpha and beta. Immunogenetics 49:438–445

    PubMed  CAS  Google Scholar 

  • Minami Y, Kawasaki H, Minami M, Tanahashi N, Tanaka K, Yahara I (2000) A critical role for the proteasome activator PA28 in the Hsp90-dependent protein refolding. J Biol Chem 275:9055–9061

    PubMed  CAS  Google Scholar 

  • Mo AX, van Lelyveld SF, Craiu A, Rock KL (2000) Sequences that flank subdominant and cryptic epitopes influence the proteolytic generation of MHC class I-presented peptides. J Immunol 164:4003–4010

    PubMed  CAS  Google Scholar 

  • Mo XY, Cascio P, Lemerise K, Goldberg AL, Rock K (1999) Distinct proteolytic processes generate the C and N termini of MHC class I-binding peptides. J Immunol 163:5851–5859

    PubMed  CAS  Google Scholar 

  • Momburg F, Ortiz-Navarrete V, Neefjes J, Goulmy E, van de Wal Y, Spits H, Powis SJ, Butcher GW, Howard JC, Walden P, et al. (1992) Proteasome subunits encoded by the major histocompatibility complex are not essential for antigen presentation. Nature 360:174–177

    PubMed  CAS  Google Scholar 

  • Momburg F, Roelse J, Howard JC, Butcher GW, Hámmerling GJ, Neefjes JJ (1994) Selectivity of MHC-encoded peptide transporters from human, mouse and rat. Nature 367:648–651

    PubMed  CAS  Google Scholar 

  • Momburg F, Hámmerling GJ (1998) Generation and TAP-mediated transport of peptides for major histocompatibility complex class I molecules. Adv Immunol 68:191–256

    PubMed  CAS  Google Scholar 

  • Monaco JJ (1992) A molecular model of MHC class-I-restricted antigen processing. Immunol Today 13:173–179

    PubMed  CAS  Google Scholar 

  • Monaco JJ, McDevitt HO (1986) The LMP antigens: a stable MHC-controlled multisubunit protein complex. Hum Immunol 15:416–426

    PubMed  CAS  Google Scholar 

  • Morel S, Levy F, Burlet-Schiltz O, Brasseur F, Probst-Kepper M, Peitrequin AL, Monsarrat B, Van Velthoven R, Cerottini JC, Boon T, Gairin JE, Van den Eynde BJ (2000) Processing of some antigens by the standard proteasome but not by the immunoproteasome results in poor presentation by dendritic cells. Immunity 12:107–117

    PubMed  CAS  Google Scholar 

  • Murata S, Kawahara H, Tohma S, Yamamoto K, Kasahara M, Nabeshima Y, Tanaka K, Chiba T (1999) Growth retardation in mice lacking the proteasome activator PA28gamma. J Biol Chem 274:38211–38215

    PubMed  CAS  Google Scholar 

  • Nandi D, Jiang H, Monaco JJ (1996) Identification of MECL-1 (LMP-10) as the third IFN-gamma-inducible proteasome subunit. J Immunol 156:2361–2364

    PubMed  CAS  Google Scholar 

  • Nandi D, Marusiña K, Monaco JJ (1998) How do endogenous proteins become peptides and reach the endoplasmic reticulum. Curr Top Microbiol Immunol 232:15–47

    PubMed  CAS  Google Scholar 

  • Neefjes J, Gottfried E, Roelse J, Grommé M, Obst R, Hámmerling GJ, Momburg F (1995) Analysis of the fine specificity of rat, mouse and human TAP peptide transporters. Eur J Immunol 25:1133–1136

    PubMed  CAS  Google Scholar 

  • Neisig A, Roelse J, Sijts AJ, Ossendorp F, Feltkamp MC, Kast WM, Melief CJ, Neefjes JJ (1995) Major differences in transporter associated with antigen presentation (TAP)-dependent translocation of MHC class I-presentable peptides and the effect of flanking sequences. J Immunol 154:1273–1279

    PubMed  CAS  Google Scholar 

  • Niedermann G, Butz S, Ihlenfeldt HG, Grimm R, Lucchiari M, Hoschutzky H, Jung G, Maier B, Eichmann K (1995) Contribution of proteasome-mediated proteolysis to the hierarchy of epitopes presented by major histocompatibility complex class I molecules. Immunity 2:289–299

    PubMed  CAS  Google Scholar 

  • Niedermann G, King G, Butz S, Birsner U, Grimm R, Shabanowitz J, Hunt DF, Eichmann K (1996) The proteolytic fragments generated by vertebrate proteasomes: structural relationships to major histocompatibility complex class I binding peptides. Proc Natl Acad Sci USA 93:8572–8577

    PubMed  CAS  Google Scholar 

  • Niedermann G, Grimm R, Geier E, Maurer M, Realini C, Gartmann C, Soli J, Omura S, Rechsteiner MC, Baumeister W, Eichmann K (1997) Potential immunocompetence of proteolytic fragments produced by proteasomes before evolution of the vertebrate immune system. J Exp Med 186:209–220

    PubMed  CAS  Google Scholar 

  • Niedermann G, Geier E, Lucchiari-Hartz M, Hitziger N, Rampsperger A, Eichmann K (1999) The specificity of proteasomes: impact on processing and presentation of antigens. Immunol Rev 172: 29–48

    PubMed  CAS  Google Scholar 

  • Nieland TJ, Tan MC, Monne-van Muijen M, Koning F, Kruisbeek AM, van Bleek GM (1996) Isolation of an immunodominant viral peptide that is endogenously bound to the stress protein GP96/GRP94. Proc Natl Acad Sci USA 93:6135–6139

    PubMed  CAS  Google Scholar 

  • Nussbaum AK, Dick TP, Keilholz W, Schirle M, Stevanovic S, Dietz K, Heinemeyer W, Groll M, Wolf DH, Huber R, Rammensee HG, Schild H (1998) Cleavage motifs of the yeast 20S proteasome beta subunits deduced from digests of enolase 1. Proc Natl Acad Sci USA 95:12504–12509

    PubMed  CAS  Google Scholar 

  • Orlowski M, Michaud C (1989) Pituitary multicatalytic proteinase complex. Specificity of components and aspects of proteolytic activity. Biochemistry 28:9270–9278

    PubMed  CAS  Google Scholar 

  • Orlowski M, Cardozo C. Michaud C (1993) Evidence for the presence of five distinct proteolytic components in the pituitary multicatalytic proteinase complex. Properties of two components cleaving bonds on the carboxyl side of branched chain and small neutral amino acids. Biochemistry 32:1563–1572

    PubMed  CAS  Google Scholar 

  • Ossendorp F, Eggers M, Neisig A, Ruppert T, Groettrup M, Sijts A, Mengede E, Kloetzel PM, Neefjes J, Koszinowski U, Melief C (1996) A single residue exchange within a viral CTL epitope alters proteasome-mediated degradation resulting in lack of antigen presentation. Immunity 5:115–124

    PubMed  CAS  Google Scholar 

  • Palmer A, Rivett AJ, Thomson S, Hendil KB, Butcher GW. Fuertes G, Knecht E (1996) Subpopulations of proteasomes in rat liver nuclei, microsomes and cytosol. Biochem J 316:401–407

    PubMed  CAS  Google Scholar 

  • Pamer E, Cresswell P (1998) Mechanisms of MHC class I-restricted antigen processing. Annu Rev Immunol 16:323–358

    PubMed  CAS  Google Scholar 

  • Paz P, Brouwenstijn N, Perry R, Shastri N (1999) Discrete proteolytic intermediates in the MHC class I antigen processing pathway and MHC I-dependent peptide trimming in the ER. Immunity 11:241–251

    PubMed  CAS  Google Scholar 

  • Pieters J (2000) MHC class II-restricted antigen processing and presentation. Adv Immunol 75:159–192

    PubMed  CAS  Google Scholar 

  • Preckel T, Fung-Leung WP, Cai Z, Vitiello A, Salter-Cid L, Winqvist O, Wolfe TG, Von Herrath M, Angulo A, Ghazal P, Lee JD, Fourie AM, Wu Y, Pang J, Ngo K, Peterson PA, Fruh K, Yang Y (1999) Impaired immunoproteasome assembly and immune responses in PA28-/- njice. Science 286:2162–2165

    PubMed  CAS  Google Scholar 

  • Rammensee H-G, Bachmann J, Stevanovic S (1997) The function. In: Rammensee H-G (ed) MHC Ligands and Peptide Motifs. Landes Biosciences, Austin, Texas, pp 217–369

    Google Scholar 

  • Realini C, Rogers SW, Rechsteiner M (1994) KEKE motifs. Proposed roles in protein-protein association and presentation of peptides by MHC class I receptors. FEBS Lett 348:109–113

    PubMed  CAS  Google Scholar 

  • Rechsteiner M, Realini C, Ustrell V (2000) The proteasome activator 1 IS REG (PA28) and class I antigen presentation. Biochem J 345:1–15

    PubMed  CAS  Google Scholar 

  • Reits EAJ, Benham AM, Plougastel B, Neefjes J, Trowsdale J (1997) Dynamics of proteasome distribution in living cells. EMBO J 16:6087–6094

    PubMed  CAS  Google Scholar 

  • Reits EA, Vos JC, Gromme M, Neefjes J (2000) The major substrates for TAP in vivo are derived from newly synthesized proteins [see comments]. Nature 404:774–778

    PubMed  CAS  Google Scholar 

  • Rivett AJ (1985) Purification of a liver alkaline protease which degrades oxidatively modified glutamine synthetase. Characterization as a high molecular weight cysteine proteinase. J Biol Chem 260:12600–12606

    PubMed  CAS  Google Scholar 

  • Rivett AJ, Palmer A, Knecht E (1992) Electron microscopic localization of the multicatalytic proteinase complex in rat liver and in cultured cells. J Histochem Cytochem 40:1165–1172

    PubMed  CAS  Google Scholar 

  • Rock KL, Gramm C, Rothstein L, Clark K, Stein R, Dick L, Hwang D, Goldberg AL (1994) Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules. Cell 78:761–771

    PubMed  CAS  Google Scholar 

  • Rock KL, Goldberg AL (1999) Degradation of cell proteins and the generation of MHC class I-presented peptides. Annu Rev Immunol 17:739–779

    PubMed  CAS  Google Scholar 

  • Rowland-Jones S, Tan R, McMichael A (1997) Role of cellular immunity in protection against HIV infection. Adv Immunol 65:277–346

    PubMed  CAS  Google Scholar 

  • Schubert U, Anton LC, Gibbs J, Norbury CC, Yewdell JW, Bennink JR (2000) Rapid degradation of a large fraction of newly synthesized proteins by proteasomes [see comments]. Nature 404:770–774

    PubMed  CAS  Google Scholar 

  • Schwarz K, de Giuli R, Schmidtke G, Kostka S, van den Broek M, Kim KB, Crews CM, Kraft R, Groettrup M (2000a) The selective proteasome inhibitors lactacystin and epoxomicin can be used to either up- or down-regulate antigen presentation at nontoxic doses. J Immunol 164:6147–6157

    PubMed  CAS  Google Scholar 

  • Schwarz K, van Den Broek M, Kostka S, Kraft R, Soza A, Schmidtke G, Kloetzel PM, Groettrup M (2000b) Overexpression of the proteasome subunits LMP2, LMP7, and MECL-1, but not PA28 alpha/beta, enhances the presentation of an immunodominant lymphocytic choriomeningitis virus T cell epitope. J Immunol 165:768–778

    PubMed  CAS  Google Scholar 

  • Seemüller E, Lupas A, Stock D, Lowe J, Huber R, Baumeister W (1995) Proteasome from Thermoplasma acidophilum: a threonine protease [see comments]. Science 268:579–582

    PubMed  Google Scholar 

  • Sewell AK, Price DA, Teisserenc H, Booth BL Jr., Gileadi U, Flavin FM, Trowsdale J, Phillips RE, Cerundolo V (1999) IFN-gamma exposes a cryptic cytotoxic T lymphocyte epitope in HIV-1 reverse transcriptase. J Immunol 162:7075–7079

    PubMed  CAS  Google Scholar 

  • Shimbara N, Nakajima H, Tanahashi N, Ogawa K, Niwa S, Uenaka A, Nakayama E, Tanaka K (1997) Double-cleavage production of the CTL epitope by proteasomes and PA28: role of the flanking region. Genes to Cells 2:785–800

    PubMed  CAS  Google Scholar 

  • Shimbara N, Ogawa K, Hidaka Y, Nakajima H, Yamasaki N, Niwa S, Tanahashi N, Tanaka K (1998) Contribution of proline residue for efficient production of MHC class I ligands by proteasomes. J Biol Chem 273:23062–23071

    PubMed  CAS  Google Scholar 

  • Sibille C, Gould KG, Willard-Gallo K, Thomson S, Rivett AJ, Powis S, Butcher GW, De Baetselier P (1995) LMP2+ proteasomes are required for the presentation of specific antigens to cytotoxic T lymphocytes. Curr Biol 5:923–930

    PubMed  CAS  Google Scholar 

  • Sijts AJ, Ruppert T, Rehermann B, Schmidt M, Koszinowski U, Kloetzel PM (2000a) Efficient generation of a hepatitis B virus cytotoxic T lymphocyte epitope requires the structural features of immunoproteasomes. J Exp Med 191:503–514

    PubMed  CAS  Google Scholar 

  • Sijts AJ, Standera S, Toes RE, Ruppert T, Beekman NJ, van Veelen PA, Ossendorp FA, Melief CJ, Kloetzel PM (2000b) MHC class I antigen processing of an adenovirus CTL epitope is linked to the levels of immunoproteasomes in infected cells. J Immunol 164:4500–4506

    PubMed  CAS  Google Scholar 

  • Snyder HL, JW Yewdell, JR Bennink (1994) Trimming of antigenic peptides in an early secretory compartiment. J Exp Med 180:2389–2394

    PubMed  CAS  Google Scholar 

  • Song X, Mott JD, von Kampen J, Pramanik B, Tanaka K, Slaughter CA, DeMartino GN (1996) A model for the quaternary structure of the proteasome activator PA28. J Biol Chem 271: 26410–26417

    PubMed  CAS  Google Scholar 

  • Stein RL, Melandri F, Dick L (1996) Kinetic characterization of the chymotryptic activity of the 20S proteasome. Biochemistry 35:3899–3908

    PubMed  CAS  Google Scholar 

  • Stevanovic S, Schild H (1999) Quantitative aspects of T cell activation-peptide generation and editing by MHC class I molecules. Semin Immunol 11:375–384

    PubMed  CAS  Google Scholar 

  • Stoltze L, Dick TP, Deeg M, Pommerl B, Rammensee HG, Schild H (1998) Generation of the vesicular stomatitis virus nucleoprotein cytotoxic T lymphocyte epitope requires proteasome-dependent and -independent proteolytic activities. Eur J Immunol 28:4029–4036

    PubMed  CAS  Google Scholar 

  • Svensson K, Levy F, Sundberg U, Boman HG, Hendil KB, Kvist S (1996) Proteasomes generate in vitro a natural peptide of influenza-A nucleoprotein functional in HLA-B27 antigen assembly. Int Immunol 8:467–478

    PubMed  CAS  Google Scholar 

  • Tanaka K, Kasahara M (1998) The MHC class I ligand-generating system: roles of immunoproteasomes and the interferon-gamma-inducible proteasome activator PA28. Immunol Rev 163:161–176

    PubMed  CAS  Google Scholar 

  • Theobald M, Ruppert T, Kuckelkorn U, Hernandez J, Haussler A, Ferreira EA, Liewer U, Biggs J, Levine AJ, Huber C, Koszinowski UH, Kloetzel PM, Sherman LA (1998) The sequence alteration associated with a mutational hotspot in p53 protects cells from lysis by cytotoxic T lymphocytes specific for a flanking peptide epitope. J Exp Med 188:1017–1028

    PubMed  CAS  Google Scholar 

  • Thompson MW, Singh SK, Maurizi MR (1994) Processive degradation of proteins by the ATP-dependent Clp protease from Escherichia coli. Requirement for the multiple array of active sites in ClpP but not ATP hydrolysis. J Biol Chem 269:18209–18215

    PubMed  CAS  Google Scholar 

  • Tokunaga F, Goto T, Koide T, Murakami Y, Hayashi S, Tamura T, Tanaka K, Ichihara A (1994) ATP- and antizyme-dependent endoproteolysis of ornithine decarboxylase to oligopeptides by the 26S proteasome. J Biol Chem 269:17382–17385

    PubMed  CAS  Google Scholar 

  • Tsubuki S, Saito Y, Kawashima S (1994) Purification and characterization of an endogenous inhibitor specific to the Z-Leu-Leu-Leu-MCA degrading activity in proteasome and its identification as heat-shock protein 90. FEBS Lett 344:229–233

    PubMed  CAS  Google Scholar 

  • Udaka K, Tsomides TJ, Walden P, Fukusen N, Eisen HN (1993) A ubiquitous protein is the source of naturally occurring peptides that are recognized by a CD8 + T-cell clone. Proc Natl Acad Sci USA 90:11272–11276

    PubMed  CAS  Google Scholar 

  • Uebel S, Kraas W, Kienle S, Wiesmuller KH, Jung G, Tampe R (1997) Recognition principle of the TAP transporter disclosed by combinatorial peptide libraries. Proc Natl Acad Sci USA 94:8976–8981

    PubMed  CAS  Google Scholar 

  • Uenaka A, Ono T, Akisawa T, Wada H, Yasuda T, Nakayama E (1994) Identification of a unique antigen peptide pRLl on BALB/c RL male 1 leukemia recognized by cytotoxic T lymphocytes and its relation to the Akt oncogene. J Exp Med 180:1599–1607

    PubMed  CAS  Google Scholar 

  • Ustrell V, Pratt G, Rechsteiner M (1995) Effects of interferon gamma and major histocompatibility complex-encoded subunits on peptidase activities of human multicatalytic proteases [published errata appear in Proc Natl Acad Sci USA 1995, 92:3632 and 1995, 92:7605], Proc Natl Acad Sci USA 92:584–588

    PubMed  CAS  Google Scholar 

  • Valmori D, Gileadi U, Servis C, Dunbar PR, Cerottini JC, Romero P, Cerundolo V, Levy F (1999) Modulation of proteasomal activity required for the generation of a cytotoxic T lymphocyte-defined peptide derived from the tumor antigen MAGE-3. J Exp Med 189:895–906

    PubMed  CAS  Google Scholar 

  • Van Endert PM (1996) Peptide selection for presentation by HLA class I: a role for the human transporter associated with antigen processing? Immunol Res 15:265–279

    PubMed  Google Scholar 

  • Van Endert PM, Riganelli D, Greco G, Fleischhauer K, Sidney J, Sette A, Bach JF (1995) The peptide-binding motif for the human transporter associated with antigen processing. J Exp Med 182:1883–1895

    PubMed  Google Scholar 

  • Van Hall T, Sijts A, Camps M, Offringa R, Melief C, Kloetzel PM, Ossendorp F (2000) Differential influence on cytotoxic T lymphocyte epitope presentation by controlled expression of either proteasome immunosubunits or PA28. J Exp Med 192:483–494

    PubMed  Google Scholar 

  • Van Kaer L, Ashton-Rickardt PG, Eichelberger M, Gaczynska M, Nagashima K, Rock KL, Goldberg AL, Doherty PC, Tonegawa S (1994) Altered peptidase and viral-specific T cell response in LMP2 mutant mice. Immunity 1:533–541

    PubMed  Google Scholar 

  • Villadangos JA, Ploegh HL (2000) Proteolysis in MHC class II antigen presentation: who’s in charge? Immunity 12:233–239

    PubMed  CAS  Google Scholar 

  • Vinitsky A, Cardozo C, Sepp-Lorenzino L, Michaud C, Orlowski M (1994) Inhibition of the proteolytic activity of the multicatalytic proteinase complex (proteasome) by substrate-related peptidyl aldehydes. J Biol Chem 269:29860–29866

    PubMed  CAS  Google Scholar 

  • Vinitsky A, Anton LC, Snyder HL, Orlowski M, Bennink JR, Yewdell JW (1997) The generation of MHC class I-associated peptides is only partially inhibited by proteasome inhibitors: involvement of nonproteasomal cytosolic proteases in antigen processing? J Immunol 159:554–564

    PubMed  CAS  Google Scholar 

  • Wenzel T, Eckerskorn C, Lottspeich F, Baumeister W (1994) Existence of a molecular ruler in pro teasomes suggested by analysis of degradation products. FEBS Lett 349:205–209

    PubMed  CAS  Google Scholar 

  • Wilk S, Orlowski M (1980) Cation-sensitive neutral endopeptidase: isolation and specificity of the bovine pituitary enzyme. J Neurochem 35:1172–1182

    PubMed  CAS  Google Scholar 

  • Yague J, Alvarez I, Rognan D, Ramos M, Vazquez J, de Castro JA (2000) An N-acetylated natural ligand of human histocompatibility leukocyte antigen (HLA)-B39. Classical major histocompatibility complex class I proteins bind peptides with a blocked NH(2) terminus in vivo. J Exp Med 191:2083–2092

    PubMed  CAS  Google Scholar 

  • Yang B, Hahn YS, Hahn CS, Braciale TJ (1996) The requirement for proteasome activity class I major histocompatibility complex antigen presentation is dictated by the length of preprocessed antigen. J Exp Med 183:1545–1552

    PubMed  CAS  Google Scholar 

  • Yang Y, Waters JB, Fruh K, Peterson PA (1992) Proteasomes are regulated by interferon gamma: implications for antigen processing. Proc Natl Acad Sci USA 89:4928–4932

    PubMed  CAS  Google Scholar 

  • Yellen-Shaw AJ, Wherry EJ, Dubois GC, Eisenlohr LC (1997) Point mutation flanking a CTL epitope ablates in vitro and in vivo recognition of a full-length viral protein. J Immunol 158:3227–3234

    PubMed  CAS  Google Scholar 

  • Yewdell JW, Esquivel F, Arnold D, Spies T, Eisenlohr LC, Bennink JR (1993) Presentation of numerous viral peptides to mouse major histocompatibility complex (MHC) class I-restricted T lymphocytes is mediated by the human MHC-encoded transporter or by a hybrid mouse-human transporter. J Exp Med 177:1785–1790

    PubMed  CAS  Google Scholar 

  • Yewdell J, Lapham C, Bacik I, Spies T, Bennink J (1994) MHC-encoded proteasome subunits LMP2 and LMP7 are not required for efficient antigen presentation. J Immunol 152:1163–1170

    PubMed  CAS  Google Scholar 

  • Yewdell JW, Anton LC, Bennink JR (1996) Defective ribosomal products (DRiPs): a major source of antigenic peptides for MHC class I molecules? J Immunol 157:1823–1826

    PubMed  CAS  Google Scholar 

  • Yewdell JW, Bennink JR (1999a) Immunodominance in major histocompatibility complex class I-restricted T lymphocyte responses. Annu Rev Immunol 17:51–88

    PubMed  CAS  Google Scholar 

  • Yewdell J, Anton LC, Bacik I, Schubert U, Snyder HL, Bennink JR (1999b) Generating MHC class I ligands from viral gene products. Immunol Rev 172:97–108

    PubMed  CAS  Google Scholar 

  • Yukawa M, Sakon M, Kambayashi J, Shiba E, Kawasaki T, Ariyoshi H, Mori T (1991) Proteasome and its novel endogeneous activator in human platelets. Biochem Biophys Res Commun 178:256–262

    PubMed  CAS  Google Scholar 

  • Zhou X, Momburg F, Liu T, Abdel Motal UM, Jondal M, Hammerling GJ, Ljunggren HG (1994) Presentation of viral antigens restricted by H-2Kb, Db or Kd in proteasome subunit LMP2- and LMP7-deficient cells. Eur J Immunol 24:1863–1868

    PubMed  CAS  Google Scholar 

  • Zinkernagel RM, Ehl S, Aichele P, Oehen S, Kundig T, Hengartner H (1997) Antigen localisation regulates immune responses in a dose- and time-dependent fashion: a geographical view of immune reactivity. Immunol Rev 156:199–209

    PubMed  CAS  Google Scholar 

  • Zwickl P, Baumeister W (1999) AAA-ATPases at the crossroads of protein life and death [news]. Nature Cell Biol 1:E97–E98

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Niedermann, G. (2002). Immunological Functions of the Proteasome. In: Zwickl, P., Baumeister, W. (eds) The Proteasome — Ubiquitin Protein Degradation Pathway. Current Topics in Microbiology and Immunology, vol 268. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59414-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59414-4_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63971-5

  • Online ISBN: 978-3-642-59414-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics