Effects of Bioturbation through the Late Eocene Impactoclastic Layer near Massignano, Italy

  • Heinz Huber
  • Christian Koeberl
  • David T. KingJr.
  • Lucille W. Petruny
  • Alessandro Montanari
Part of the Impact Studies book series (IMPACTSTUD)

Abstract

The purpose of this study was to investigate the variations in trace element composition resulting from bioturbation of a Late Eocene impactoclastic layer at Massignano, Italy. This layer has an age of 35.7 ± 0.4 Ma and is, therefore, coeval with both the North American tektite event (related to the Chesapeake Bay impact structure, USA) and the Popigai impact event (Siberia, Russia). The layer shows a distinct iridium anomaly of up to about 270 ppt. The stratigraphic leakage within Planolites and Zoophycos burrows was studied by using iridium coincidence spectrometry and conventional neutron activation analysis, on samples obtained by a micro drilling procedure. The iridium contents of the burrow fillings vary from 50 ppt about 20 cm below the impactoclastic layer to 280 ppt within the layer, depending upon the stratigraphic level where burrowing began. The stratigraphic distribution of Ir is the result of both bioturbation and chemical diffusion.

Keywords

Zircon Cobalt Geochemistry Calcite Drilling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alvarez W, Asaro F, Michel H, Alvarez LW (1982) Iridium anomaly approximately synchronous with terminal Eocene extinctions. Science 216: 886–888.CrossRefGoogle Scholar
  2. Berggren WA, Kent DV, Swisher C III (1995) A revised Cenozoic geochronology and chronostratigraphy. In: Berggren WA, Kent DV, Hardenbol J (eds) Geochronology, time scales and global stratigraphic correlations: A unified temporal framework for an historical geology. SEPM Spec Pub 54, pp 129–212.Google Scholar
  3. Bice DM, Montanari A (1988) Magnetic stratigraphy of the Massignano section across the Eocene-Oligocene boundary. In: Premoli Silva I, Coccioni R, Montanari A (eds) The Eocene- Oligocene Boundary in the Marche-Umbria Basin (Italy). IUGS Special Publication, F.lli Aniballi Publishers, Ancona, pp 111–117.Google Scholar
  4. Bohor BF, Betterton WJ, Foord EE (1988) Coesite, glass, and shocked quartz and feldspar at DSDP Site 612: Evidence for nearby impact in the late Eocene [abs]. Lunar Planet Sci 19: 114–115.Google Scholar
  5. Bottomley R, Grieve R, York D, Masaitis V (1997) The age of the Popigai impact event and its relation to events at the Eocene/Oligocene boundary. Nature 388: 365–368.CrossRefGoogle Scholar
  6. Brinkhuis H, Coccioni R (1995) Is there a relation between dinocysts changes and iridium after all? Preliminary results from the Massignano section. In: Montanari A, Coccioni R (eds) The effects of impacts in the evolution of the atmosphere and biosphere with regard to short- and long-term changes. European Science Foundation, Ancona, 40 pp.Google Scholar
  7. Clymer AK (1996) Discovery and trace element geochemistry of Late Eocene shocked quartz: Insights into the Late Eocene impacts. Master’s Thesis, Univ California, Berkeley, 85 pp.Google Scholar
  8. Clymer AK, Bice DM, Montanari A (1996) Shocked quartz from the Late Eocene: Impact evidence from Massignano, Italy. Geology 24: 483–486.CrossRefGoogle Scholar
  9. Coccioni R, Monaco P, Monechi S, Nocchi M, Parisi G (1988) Biostratigraphy of the Eocene- Oligocene boundary at Massignano (Ancona, Italy). Int Subcomm Paleog Strat, E/O Meeting, Ancona, 1987, Spec Pub II, pp 59–76.Google Scholar
  10. Farley KA, Montanari A, Shoemaker EM, Shoemaker CS (1998) Geochemical evidence for a comet shower in the Late Eocene. Science 280: 1250–1253.CrossRefGoogle Scholar
  11. Foster NH (1966) Stratigraphic leak. Am Ass Petrol Geol Bull 50: 2604–2611.Google Scholar
  12. Gardin S, Spezzaferri S, Basso D, Coccioni R (1999) Calcareous nannofossil and planktonic foraminiferal response to a meteorite impact in the Umbria-Marche Massignano section (Northeastern Apennines, Italy) [abs]. Abstracts, EUG-10 Strasbourg Meeting, Journal of Conference Abstracts 4(1): 271.Google Scholar
  13. Glass BP, Dubois DL, Ganapathy R (1982) Relationship between an iridium anomaly and the North American microtektite layer in core RC9–58 from the Caribbean Sea. Proc Lunar Planet Sci Conf 13th, J Geophys Res 87: A425–A428.CrossRefGoogle Scholar
  14. Glass BP, Burns CA, Crosbie JR, Dubois DL (1985) Late Eocene North American microtektites and clinopyroxene bearing spherules. Proc Lunar Planet Sci Conf 16th, J Geophys Res 90: D175–D196.Google Scholar
  15. Glass BP, Hall CM, York D (1986) 40Ar/39Ar laser-probe dating of North American tektite fragments from Barbados and the age of the Eocene-Oligocene boundary. Chemical Geology 5: 181–186.Google Scholar
  16. Gonzalvo C, Molina E (1992) Estudio cuantitativo de los foraminiferos planctonicos en el estratotipo del limite Eoceno/Oligoceno en Massignano (Apeninos, Italia). Geogaceta Soc Geol Espana 12: 64–67.Google Scholar
  17. Hut P, Alvarez W, Elder W, Hansen TA, Kauffman EG, Keller G, Shoemaker EM, Weissman P (1987) Comet showers as a cause of mass extinctions. Nature 329: 118–126.CrossRefGoogle Scholar
  18. Keller G, D’Hondt SL, Orth CJ, Gilmore JS, Oliver PQ, Shoemaker EM, Molina E (1987) Late Eocene impact microspherules: Stratigraphy, age, and geochemistry. Meteoritics 22: 25–60.Google Scholar
  19. Kidwell SM, Fursich FT, Aigner T (1986) Conceptual framework for the analysis and classification of fossil concentrations. Palaios 1: 228–238.CrossRefGoogle Scholar
  20. Koeberl C (1993) Instrumental neutron activation analysis of geochemical and cosmochemical samples: a fast and reliable method for small sample analysis. J Radioanalyt Nucl Chem 168: 47–60.CrossRefGoogle Scholar
  21. Koeberl C, Huber H (2000) Optimization of the multiparameter - coincidence spectrometry for the determination of iridium in geological materials. J Radioanalyt Nucl Chem 244: 655–660.CrossRefGoogle Scholar
  22. Koeberl C, Poag CW, Reimold WU, Brandt D (1996) Impact origin of the Chesapeake Bay structure and the source of the North American tektites. Science 271: 1263–1266.CrossRefGoogle Scholar
  23. Lanci L, Lowrie W, Montanari A (1996) Magnetostratigraphy of the Eocene/Oligocene boundary in a short drill-core. Earth Planet Sci Lett 143: 37–48.CrossRefGoogle Scholar
  24. Langenhorst F (1996) Characteristics of shocked quartz in late Eocene impact ejecta from Massignano (Ancona, Italy): Clues to shock conditions and source crater. Geology 24: 487–490.CrossRefGoogle Scholar
  25. Lowrie W, Lanci L (1994) Magnetostratigraphy of Eocene-Oligocene boundary sections in Italy: No evidence for short subchrons within chrons 12R and 13R. Earth Planet Sci Lett 126: 247–258.CrossRefGoogle Scholar
  26. Lowrie W, Alvarez W, Napoleone G, Perch-Nielsen K, Premoli Silva I, Toumarkine M (1982) Paleogene magnetic stratigraphy in Umbrian pelagic carbonate rocks: The Contessa sections, Gubbio. Geol Soc Am Bull 93: 414–432.CrossRefGoogle Scholar
  27. Lowrie W, Alvarez W, Asaro F (1990) The origin of the white beds below the Cretaceous-Tertiary boundary in the Gubbio section, Italy. Earth Planet Sci Lett 98: 303–331.CrossRefGoogle Scholar
  28. Mattias P, Crocetti G, Barrese E, Montanari A, Coccioni R, Farabollini P, Parisi E (1992) Caratteristiche mineralogiche e litostratigrafiche della sezione eo-oligocenica di Massignano (Ancona, Italia) comprendente il limite Scaglia Variegata-Scaglia Cinerea. Studi Geologici Camerti 12: 93–103.Google Scholar
  29. Meyer G, Piccot D, Rocchia R, Toutain JP (1993) Simultaneous determination of Ir and Se in K-T boundary clays and volcanic sublimates. J Radioanalyt Nucl Chem 168: 125–131.CrossRefGoogle Scholar
  30. Michel HV, Asaro F, Alvarez W, Alvarez LW (1991) Geochemical study of the Cretaceous- Tertiary Boundary region at hole 752B. Proc ODP, Sci Results 121: 415–422.Google Scholar
  31. Molina E, Gonzalvo C, Keller G (1993) The Eocene-Oligocene planktic foraminiferal transition: Extinctions, impacts and hiatuses. Geol Mag 130: 483–499.CrossRefGoogle Scholar
  32. Montanari A (1988) Geochemical characterization of volcanic biotites from the Upper Eocene-Upper Miocene pelagic sequence of the Northern Apennines. In: Premoli Silva I, Coccioni R, Montanari A (eds) The Eocene-Oligocene Boundary in the Marche-Umbria Basin (Italy). IUGS Special Publication, F.lli Aniballi Publishers, Ancona, pp 209–228.Google Scholar
  33. Montanari A (1991) Authigenesis of impact spheroids in the K/T boundary clay from Italy: new constraints for high-resolution stratigraphy of terminal Cretaceous events: J Sed Petrol 61: 315–339.Google Scholar
  34. Montanari A, Koeberl C (2000) Impact stratigraphy - The Italian record. Lecture Notes in Earth Sciences 93, Springer Verlag, Heidelberg-Berlin, 364 pp.Google Scholar
  35. Montanari A, Deino A, Drake R, Turrin BD, De Paolo DJ, Odin SG, Curtis GH, Alvarez W, Bice DM (1988) Radioisotopic dating of the Eocene-Oligocene boundary in the pelagic sequence of the Northern Apennines. In: Premoli-Silva I, Coccioni R, Montanari A (eds) The Eocene-Oligocene Boundary in the Marche-Umbria basin (Italy), IUGS Special Publication, F. Aniballi Publishers, Ancona, pp 195–208.Google Scholar
  36. Montanari A, Asaro F, Michel H, Kennett JP (1993) Iridium anomalies of Late Eocene age at Massignano (Italy), and ODP site 689B (Maud Rise, Antarctic). Palaios 8: 420–437.CrossRefGoogle Scholar
  37. Oberli F, Meier M (1991) Age of Eocene-Oligocene boundary in the Marche-Umbria basin, Italy, by high resolution U-Th-Pb dating [abs]. Terra Abstracts 3: 286.Google Scholar
  38. Obradovich JD, Snee LW, Izett GA (1989) Is there more than one glassy impact layer in the Late 215 Eocene? [abs]. Geol Soc Am, Abstracts with Programs 21(6): A134.Google Scholar
  39. Odin GS, Montanari A (1989) Age radiométrique et stratotype de la limite Éocène Oligocène. Comptes Rendus Acad Sci Paris 309: 1939–1945.Google Scholar
  40. Odin GS, Montanari A, Deino A, Drake R, Guise P, Kreuzer H, Rex DC (1991) Reliability of volcano-sedimentary biotite ages around the Eocene/Oligocene boundary. Chemical Geology (Isotope Geosci) 86: 203–224.CrossRefGoogle Scholar
  41. Officer CB, Lynch DR (1983) Determination of mixing parameters from tracer distributions in deep-sea sediment cores. Marine Geology 52: 59–74.CrossRefGoogle Scholar
  42. Pierrard O, Robin E, Rocchia R, Montanari A (1998) Extraterrestrial Ni-rich spinel in upper Eocene sediments from Massignano, Italy. Geology 26: 307–310.CrossRefGoogle Scholar
  43. Poag CW, Aubry M-P (1995) Upper Eocene impactites of the U.S. East Coast: Depositional origins, biostratigraphic framework, and correlation. Palaios 10: 16–43.CrossRefGoogle Scholar
  44. Premoli Silva I, Jenkins DJ (1993) Decision on the Eocene-Oligocene boundary stratotype. Episodes 16: 379–381.Google Scholar
  45. Robin E, Boclet D, Bonté Ph, Froget L, Jehanno C, and Rocchia R (1991) The stratigraphic distribution of Ni-rich spinels in Cretaceous-Tertiary boundary rocks at El Kef (Tunisia), Caravaca (Spain) and Hole 761C (Leg 122). Earth Planet Sci Lett 107: 715–721.CrossRefGoogle Scholar
  46. Rock Color Chart Committee (1991) Rock color chart, 7th printing with revised text. Geological Society of America Boulder, Colorado.Google Scholar
  47. Salvador A (ed) (1994) International stratigraphic guide; a guide to stratigraphic classification, terminology, and procedure. Geological Society of America, 214 pp.Google Scholar
  48. Vonhof HB, Wijbrans J, Smit J (1995) The Popigai impact crater: 39Ar/40Ar dating and its expression in the 87Sr/87Sr record of the Massignano section: In Montanari A, Coccioni R (eds) The role of Impacts on the Evolution of Planet Earth, Abstracts and Field Trips, European Science Foundation, Ancona, pp 163–164.Google Scholar
  49. Vonhof HB, Smit J, Brinkhuis H, Montanari A (1998) Late Eocene impacts accelerated global cooling? In: Vonhof HB (PhD thesis) The Strontium Stratigraphic Record of Selected Geologic Events, Academisch Proefschrift, University of Utrecht, pp 77–90.Google Scholar
  50. Vonhof HB, Smit J (1999) Late Eocene microkrystites and microtektites at Maud Rise (Ocean Drilling Project Hole 689B; Southern Ocean) suggest a global extension of the approximately 35.5 Ma Pacific impact ejecta strewn field. Meteoritics 34: 747–755.CrossRefGoogle Scholar
  51. Vonhof HB, Smit J, Brinkhuis H, Montanari A, Nederbragt AJ (2000) Global cooling accelerated by early late Eocene impacts? Geology 28: 687–690 Whitehead J, Papanastassiou DA, Spray JG, Grieve RAF, Wasserburg GJ (2000) Late Eocene impact ejecta: geochemical and isotopic connections with the Popigai impact structure. Earth Planet Sci Lett 181: 473–487.CrossRefGoogle Scholar
  52. Whitehead J, Papanastassiou DA, Spray JG, Grieve RAF, Wasserburg GJ (2000) Late Eocene impact ejecta: geochemical and isotopic connections with the Popigai impact structure. Earth Planet Sci Lett 181: 473–487CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Heinz Huber
    • 1
  • Christian Koeberl
    • 1
    • 2
  • David T. KingJr.
    • 3
  • Lucille W. Petruny
    • 3
  • Alessandro Montanari
    • 2
  1. 1.Institute of GeochemistryUniversity of ViennaViennaAustria
  2. 2.Department of GeologyAuburn UniversityAuburnUSA
  3. 3.Osservatorio Geologico di ColdigiocoFrontale di Apiro (MC)Italy

Personalised recommendations