Skip to main content

Search for Morphological and Biogeochemical Vestiges of Fossil Life in Extraterrestrial Settings: Utility of Terrestrial Evidence

  • Chapter
Astrobiology

Abstract

Any veneer of life covering the surface of a planet will necessarily interact with the solid and fluid phases, with which it is in contact. Specifically, it is bound to impose a thermodynamic gradient on all planetary near-surface environments (inclusive of the atmosphere and hydrosphere), which ultimatively stems from the accumulation of negative entropy by living systems. Consequently, life acts as a driving force for a number of globally relevant chemical transformations. On Earth, typical examples of such life-induced chemical inequilibria are the glaring redox imbalance at the terrestrial surface caused by photosynthetic oxygen, or the release of large quantities of hydrogen sulfide by sulfate-reducing bacteria in the marine realm. Also, the dynamic persistence of metastable atmospheric gas mixtures (such as 02, N2 and CH4 in the terrestrial atmosphere), and of isotopic disequilibria (e.g., between water-bound oxygen of the hydrosphere and atmospheric 02), is ultimately sustained by the thermodynamic imbalance imposed by the biosphere on its environment. Conspicuous thermodynamic inequilibria within the gaseous and liquid envelopes of a planet may, therefore, be taken as a priori evidence of the presence of life [1, 2]. Applying this criterion to the present composition of the Martian atmosphere [3], the latter gives little, if any, indication of contemporary biological activity on that planet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.R. Hitchcock, J.E. Lovelock, Icarus 7, 149–159 (1967).

    Article  ADS  Google Scholar 

  2. J.E. Lovelock, Gaia, Oxford University Press, Oxford, UK, 1979.

    Google Scholar 

  3. T. Owen, K. Biemann, D.R. Rushneck, J.E. Biller, D.W. Howarth, A.L. Lafleur, J. Geophys Res. 82, 4635 (1977).

    Article  ADS  Google Scholar 

  4. M. Schidlowski, in: M.H. Engel, S.A. Macko (Eds.) Organic Geochemistry, Plenum Press, New York, 1993, pp. 639.

    Chapter  Google Scholar 

  5. M. Schidlowski, in: J.M. Greenberg, C.X. Mendoza-Gomez, V. Pirronello (Eds.) The Chemistry of Life’s Origin, Kluwer Academic Publ., The Netherlands, 1993, pp. 389.

    Google Scholar 

  6. M. Schidlowski, in: R.B. Hoover (Ed.) Instruments, Methods and Missions for Astrobiology, Proc. Int. Soc. Opt. Engin. (SPIE) 3441, Bellingham, WA, 1998, pp. 149.

    Google Scholar 

  7. M. Schidlowski, P. Aharon, in: M. Schidlowski, S. Golubic, M.M. Kimberley, D.M. McKirdy, P. A. Trudinger (Eds.) Early Organic Evolution: Implications for Mineral and Energy Resources, Springer Verlag, Berlin, 1992, pp. 147.

    Google Scholar 

  8. M.H. Carr, H. Wänke, Icarus 98, 61 (1992).

    Article  ADS  Google Scholar 

  9. M.H. Carr (Ed.) Water on Mars, Oxford University Press, Oxford, 1996, 229 pp.

    Google Scholar 

  10. V.I. Moroz, L.M. Mukhin (Eds.) About the Initial Evolution of Atmosphere and Climate of the Earth-Type Planets. Inst. Space Res. USSR Acad. Sci., Moscow, Publication D-255, 1978, 44 pp.

    Google Scholar 

  11. C.P. McKay, Icarus 91, 93 (1991).

    Article  ADS  Google Scholar 

  12. C.P. McKay, R.L. Mancinelli, C.R. Stoker, R.A. Wharton, in: H. Kieffer, B.M. Jacosky, C.W. Snyder, M.S. Matthews (Eds.), Mars, Tuscon University of Arizona Press, 1992, pp. 1234.

    Google Scholar 

  13. J.W. Schopf (Ed.) Earth’s Earliest Biosphere: Its Origin and Evolution. Princeton University Press, Princeton, NJ, XXV, 1983, 543 pp.

    Google Scholar 

  14. E.G. Nisbet, in: M.P. Coward, A.C. Ries (Eds.) Early Precambian Processes, Geol. Soc. Special Publ. 95, London, 1995, pp. 27.

    Google Scholar 

  15. K. Biemann, J. Oro,.P. Toulmin, L.E. Orgel, A.O. Nier, D.M. Anderson, P.G. Simmonds, D. Flory, A.V. Diaz, D.R. Rushneck, J.E. Biller, A.L. Lafleur, J. Geophys. Res. 82, 4641 (1977).

    Article  ADS  Google Scholar 

  16. C.P. McKay, Adv. Space Res. 6(12), 269 (1986).

    Article  ADS  Google Scholar 

  17. C.P. McKay, S.S. Nedell, Icarus 73, 142 (1988).

    Article  ADS  Google Scholar 

  18. R.V. Burne, L.S. Moore, Palaios 2, 241 (1987).

    Article  Google Scholar 

  19. M.R. Walter, in: J.W. Schopf (Ed.) Earth’s Earliest Biopshere: Its Origin and Evolution, Princeton University Press, Princeton, NJ, 1983, pp. 187.

    Google Scholar 

  20. J.P. Grotzinger, A.H. Knoll, Annu. Rev. Earth Planet. Sci. 27, 313 (1999).

    Article  ADS  Google Scholar 

  21. H.J. Hofmann, in: R.E. Riding, S.M. Awramik (Eds.) Microbial Sediments, Springer Verlag, Berlin, 2000, pp. 315.

    Google Scholar 

  22. H.D. Pflug, Naturwissenschaften 65, 611 (1978).

    Article  ADS  Google Scholar 

  23. S.M. Awramik, J.W. Schopf, M.R. Walter, in: B. Nagy, R. Weber, J.C. Guerrero, M. Schidlowski (Eds.) Developments and Interactions of the Precambrian Atmosphere, Lithosphere and Biosphere, Developments in Precambrian Geology 7, Elsevier, Amsterdam, 1983, pp. 249.

    Google Scholar 

  24. R. Buick, Palaios 5, 441 (1991).

    Article  Google Scholar 

  25. J.W. Schopf, B.M. Packer, Science 237, 70 (1987).

    Article  ADS  Google Scholar 

  26. J.W. Schopf, Science 260, 640 (1993).

    Article  ADS  Google Scholar 

  27. B. Durand (Ed.) Kerogen-Insoluble Organic Matter from Sedimentary Rocks, Editions Techniq, Paris, 1980, 519 pp.

    Google Scholar 

  28. A. Treibs, Liebigs Ann. d. Chemie 510, 42 (1934).

    Article  Google Scholar 

  29. G. Eglinton, M. Calvin, Sci. Am. 216, 32 (1967).

    Article  Google Scholar 

  30. R.E. Summons, T.G. Powell, in: M. Schidlowski, S. Golubic, M.M. Kimberley, D.M. McKiroy, P.A. Trudinger (Eds.) Early Organic Evolution: Implications for Mineral and Energy Resources, Springer, Berlin, 1992, pp. 296.

    Google Scholar 

  31. J.J. Brocks, G.A. Logan, R. Buick, R.E. Summons, Science 285, 1033 (1999).

    Article  Google Scholar 

  32. A.B. Ronov, A.A. Yaroshevsky, A.A. Migdisov (Eds.) Khimicheskoe Stroyenie Zemnoi Kory i Khimicheski Balans Glavnykh Elementov (Chemical Structure of the Earth’s Crust and Chemical Balance of Major Elements (in Russian)). Izdatel’stvo Nauka, Moscow, 1990, 181 pp.

    Google Scholar 

  33. M. Schidlowski, P.W.V. Appel, R. Eichmann, C.E. Junge, Geochim. Cosmochim. Acta 43, 189 (1979).

    Article  ADS  Google Scholar 

  34. M. Schidlowski, in: H.D. Holland, M. Schidlowski (Eds.) Mineral Deposit and the Eolution of the Biosphere, Springer, Berlin, 1982, pp. 103.

    Google Scholar 

  35. J.M. Hayes, I.R. Kaplan, K.W. Wedeking, in: J.W. Schopf (Ed.) Earth Earliest Biosphere: Its Origin and Evolution, Princeton University Press, Princeton, N.J, 1983, pp. 93.

    Google Scholar 

  36. R. Park, S. Epstein, Geochim. Cosmochim. Acta 21, 110 (1960).

    Article  ADS  Google Scholar 

  37. M.H. O’Leary, Phytochemistry 20, 55 (1981).

    Google Scholar 

  38. M. Schidlowski, J.M. Hayes, I.R. Kaplan, in: J.W. Schopf (Ed.) Earth’s Earliest Biosphere: Its Origin and Evolution, Princeton University Press, Princeton, NJ, 1983, pp. 149.

    Google Scholar 

  39. S.J. Mojzsis, G. Arrhenius, K.D. McKeegan, T.M. Harrison, A.P. Nutman, R.L. Friend, Nature 384, 55 (1996).

    Article  ADS  Google Scholar 

  40. J.M. Hayes, in: S. Bengtson (Ed.) Early Life on Earth, Nobel Symposium 84, New York Columbia Univ. Press, 1994, pp. 220.

    Google Scholar 

  41. J.W. Schopf (Ed.) Cradle of Life, Princeton Univ. Press, Princeton, N.J., 1999, 347 pp.

    Google Scholar 

  42. L.J. Rothschild, D. DesMarais, Adv. Space Res. 9(6), 159 (1989).

    Article  ADS  Google Scholar 

  43. M. Schidlowski, Adv. Space Res. 12(4), 101 (1992).

    Article  ADS  Google Scholar 

  44. H.D. Pflug, Topics in Current Chemistry 139, 1 (1987).

    Article  Google Scholar 

  45. P. Deines, in: P. Fritz, J.C. Fontes (Eds.) Handbook of Environmental Isotope Geochemistry, Elsevier, Amsterdam, (1980), Vol. 1, pp. 329.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schidlowski, M. (2002). Search for Morphological and Biogeochemical Vestiges of Fossil Life in Extraterrestrial Settings: Utility of Terrestrial Evidence. In: Horneck, G., Baumstark-Khan, C. (eds) Astrobiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59381-9_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59381-9_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63957-9

  • Online ISBN: 978-3-642-59381-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics