Skip to main content

Halophilic Microorganisms

  • Chapter
Astrobiology

Abstract

Concentrated salt solutions like salt or soda lakes, coastal lagoons or man-made salterns, inhabited by only a few forms of higher life, are dominated by prokaryotic microorganisms. Global salt deposits show that evaporation of marine salt water and the development of hypersaline habitats is an ongoing process for millions of years and providing ample time for the evolution of specialized halophilic Bacteria and Archaea. Halophiles, which require more than 0.5 M NaCl for optimal growth [1], have developed two different basic mechanisms of osmoregulatory solute accumulation to cope with ionic strength and the considerable water stress. These mechanisms allow halophiles to proliferate in saturated salt solutions and to survive entrapment in salt rock. The latter was proven by the isolation of viable halophilic Archaea from several subsurface salt deposits of Permo-Triassic age. If halophilic prokaryotes on Earth can remain in viable states for long periods of time, then it is reasonable to consider, under similar extraterrestrial environments, the existence of extraterrestrial organisms. This becomes all the more plausible, considering that halite has been found in several extraterrestrial materials. Here we consider the different mechanisms of osmoadaptation, the environment of halophiles, especially of subterranean halophilic isolates, and the relevance of microbial survival in high saline environments to astrobiology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.H. Reed, in: R.A. Herbert, G.A. Codd (Eds.) Microbes in extreme environments, Special publications for the Society for General Microbiology, Academic Press, London, 17, 1986, pp. 51.

    Google Scholar 

  2. T.E. Sweeney, C.A. Beuchat, Am. J. Physiol. 264, R469 (1993).

    Google Scholar 

  3. D.S. Cayley, B.A. Lewis, H.J. Guttman, M.T. Record, J. Mol. Biol. 222, 281, (1991).

    Article  Google Scholar 

  4. A. Oren, in: A. Balows, H.G. Trüper, M. Dworkin, W. Harder, K.H. Schleifer (Eds.) The Prokaryotes, 2nd edn., Springer Verlag, New York, NY, 1991, pp. 1893.

    Google Scholar 

  5. A. Oren, M. Heldal, S. Nordland, Can. J. Microbiol. 43, 588 (1997).

    Article  Google Scholar 

  6. L.D. Mermelstein, J.G. Zeikus in: Edited by K. Horikoshi, W.D. Grant (Eds.) Extremophiles. Microbial life in extreme environments, Wiley-Liss, New York, 1998.

    Google Scholar 

  7. H. Eisenberg, E.J. Wachtel, Annu. Rev. Biophys. Chem. 16, 69 (1987).

    Article  Google Scholar 

  8. H. Eisenberg, M. Mevarech, G. Zaccai, Adv. in Protein Chemistry 43, 1 (1992).

    Article  Google Scholar 

  9. D.J. Kushner, M. Kamekura, in: F. Rodriguez-Valera (Ed.) Halophilic Bacteria, Vol I, CRC Press Inc, Boca Raton, 1988, pp. 109.

    Google Scholar 

  10. D.E. Robertson, D. Noll, M.F. Roberts, J. Biol. Chem. 267, 14893 (1992).

    Google Scholar 

  11. M.C. Lai, R.P. Gunsalus, J. Bacteriol. 174, 7474 (1992).

    Google Scholar 

  12. A.D. Brown, Bacteriol. Rev. 40, 803 (1976).

    Google Scholar 

  13. P. Falkenberg, A.T. Matheson, C.F. Rollin, Biochim. Biophys. Acta 434, 474 (1976).

    Google Scholar 

  14. K. Lippert, E.A. Galinski, Appl. Microbiol. Biotech. 37, 61 (1992).

    Article  Google Scholar 

  15. G. Malin, A. Lapidot, J. Bacteriol. 178, 385 (1996).

    Article  Google Scholar 

  16. N. Hershkovitz, A. Oren, Y. Cohen, Appl. Environ. Microbiol. 57, 645 (1991).

    Google Scholar 

  17. E.A. Galinski, H.G. Trüper, FEMS Microbiol. Rev. 15, 95 (1994).

    Article  Google Scholar 

  18. D. Robertson, D. Noll, M.F. Roberts, J. Menaia, R.D. Boone, Appl. Environ. Microbiol. 56, 563 (1990).

    Google Scholar 

  19. M.C. Lai, K.R. Sowers, D.E. Robertson, M.F. Roberts, R.P. Gunsalus, J. Bacteriol. 173, 5352 (1991).

    Google Scholar 

  20. M.H. Sibley and J.H. Yopp, Arch. Microbiol. 149, 43, 1987.

    Article  Google Scholar 

  21. I. Tschichholz, Ph.D. Thesis, University of Bonn, 1994.

    Google Scholar 

  22. M.F. Roberts, M.C. Lai, R.P. Gunsalus, J. Bacteriol. 174, 6688 (1992).

    Google Scholar 

  23. J. Severin, A. Wohlfarth, E.A. Galinski, J. Gen. Microbiol. 138, 1629 (1992).

    Google Scholar 

  24. P. Peters, E.A. Galinski, H.G. Trüper, FEMS Microbiol. Lett. 71, 157 (1990).

    Article  Google Scholar 

  25. P. Louis, E.A. Galinski, Microbiology 143, 1141 (1997).

    Article  Google Scholar 

  26. K. Göller, A. Ofer, E.A. Galinski, FEMS Microbiol. Lett. 161, 293 (1998).

    Article  Google Scholar 

  27. K. Göller, M. Stein, E.A. Galinski, H.J. Kunte, 21st Congress of the European Society for Comparative Physiology and Biochemistry, CBP 126/A Suppl.l, 2000, pp. 61.

    Google Scholar 

  28. R. Regev, I. Peri, H. Gilboa, Y. Avi-Dor, Arch. Biochem. Biophys. 278, 106 (1990).

    Article  Google Scholar 

  29. P. Peters, E. Tel-Or, H.G. Trüper, J. Gen. Microbiol. 138, 1993 (1992).

    Google Scholar 

  30. D. Cánovas, C. Vargas, L.N. Csonka, A. Ventosa, J.J. Nieto, J. Bacteriol. 178, 7221 (1996).

    Google Scholar 

  31. M. Jebbar, R. Talibart, K. Gloux, T. Bernard, C. Blanco, J. Bacteriol. 174, 5027 (1992).

    Google Scholar 

  32. H. Robert, C. LeMarrec, C. Blanco, M. Jebbar, Appl. Environ. Microbiol. 66, 509 (2000).

    Article  Google Scholar 

  33. M. Hagemann, S. Richter, S. Mikkat, J. Bacteriol. 179, 714 (1997).

    Google Scholar 

  34. K. Grammann, A. Volke, H.J. Kunte, 21st Congress of the European Society for Comparative Physiology and Biochemistry, CBP 126/A Suppl.l, 2000, pp. 84.

    Google Scholar 

  35. B. Kempf, E. Bremer, Arch. Microbiol. 170, 319 (1998).

    Article  Google Scholar 

  36. M. Saier, Jr, Microbiol. Rev. 58, 71 (1994).

    Google Scholar 

  37. H. Peter, B. Weil, A. Burkovski, R. Krämer, S. Morbach, J. Bacteriol. 180, 6005 (1998).

    Google Scholar 

  38. R. Rabus, D.L. Jack, D.J. Kelly, M.H.J. Saier, Microbiology, 145, 3431 (1999).

    Google Scholar 

  39. K.I. Racher, R.T. Voegele, E.V. Marshall, D.E. Culham, J.M. Wood, H. Jung, M. Bacon, M.T. Cairns, S.M. Ferguson, W.-J. Liang, P.J.F. Henderson, G. White, F.R. Hallett, Biochemistry 38, 1676 (1999).

    Article  Google Scholar 

  40. H.J. Kunte, R.A. Crane, D.E. Culham, D. Richmond, J.M. Wood, J. Bacteriol. 181, 1537(1999).

    Google Scholar 

  41. R. Rubenhagen, H. Ronsch, H. Jung, H. Krämer, S. Morbach, J. Biol. Chem. 275, 735 (2000).

    Article  Google Scholar 

  42. P.D. Franzmann, in: F. Rodriguez (Ed.) General and Applied Aspects of Halophilic Microorganisms, Plenum Press, New York, 1991, pp. 9.

    Chapter  Google Scholar 

  43. M.A. Zharkov, in: History of Paleozoic Salt Accumulation. Springer Verlag, Berlin, 1981.

    Google Scholar 

  44. G. Einsele, in: Sedimentary Basins, Springer Verlag, Berlin, 1992.

    Google Scholar 

  45. W. Klaus, Z. Dtsch. Geol. Ges. 105, 756 (1955).

    Google Scholar 

  46. W. Klaus, Carinthia II, 164/Jahrg. 84, 79, Klagenfurt (1974).

    Google Scholar 

  47. W.T. Holser, I.R. Kaplan, Chem. Geol. 1, 93 (1966).

    Article  Google Scholar 

  48. E. Pak, O. Schauberger, Verh. Geol. B-A, Jahrg 1981, 185.

    Google Scholar 

  49. H.J. Dombrowski, Zbl. Bakteriol. 183, Abt. I Originale, 173 (1961).

    Google Scholar 

  50. H.J. Dombrowski, Ann. N.Y. Acad. Sci. 108, 453 (1963).

    Article  ADS  Google Scholar 

  51. R. Reiser, P. Tasch, Trans. Kans. Acad. Sci. 63, 31 (1960).

    Article  Google Scholar 

  52. A. Rippel, Arch. Mikrobiol. 6, 350 (1935).

    Article  Google Scholar 

  53. E. Bien, W. Schwartz, Z. Allg. Mikrobiol. 5, 185 (1965).

    Article  Google Scholar 

  54. P. Tasch, Univ Wichita Bulletin 39, 2 (1963).

    Google Scholar 

  55. F.-J. Bibo, R. Söngen, R.E. Fresenius, Kali u. Steinsalz, 8, 36 (1983).

    Google Scholar 

  56. A. Nehrkorn, Arch. Hyg. Bakteriol. 150, 232 (1967).

    Google Scholar 

  57. R.H. Vreeland, J.H. Huval, in: F. Rodríguez-Valera (Ed.) General and Applied Aspects of Microorganisms, Plenum Press, New York, 1991, pp. 53.

    Chapter  Google Scholar 

  58. C.F. Norton, T.J. McGenity, W.D. Grant, J. Gen. Microbiol. 139, 1077 (1993).

    Google Scholar 

  59. E.B.M. Denner, T.J. McGenity, H.-J. Busse, W.D. Grant, G Wanner, H. Stan-Lotter, Int. J. Syst. Bacteriol. 44, 774 (1994).

    Article  Google Scholar 

  60. H. Stan-Lotter, M. Sulzner, E. Egelseer, C. Norton, L.I. Hochstein, Orig. Life Evol. Biosph. 23, 53 (1993).

    Article  ADS  Google Scholar 

  61. H. Stan-Lotter, C. Radax, C. Gruber, T.J. McGenity, A. Legat, G. Wanner, E.B.M. Denner, in: F. Rodriguez-Valera (Ed.) SALT 2000, 8th World Salt Symposium 2000, Amsterdam, Elsevier Science B.V., 2000, pp. 921.

    Google Scholar 

  62. T.J. McGenity, R.T. Gemmell, W.D. Grant, H. Stan-Lotter, Environ. Microbiol. 2, 243 (2000).

    Article  Google Scholar 

  63. W.D. Grant, R.T. Gemmell, T.J. McGenity, Extremophiles 2, 279 (1998).

    Article  Google Scholar 

  64. H. Stan-Lotter, T.J. McGenity, A. Legat, E.B.M. Denner, K. Glaser, K.O. Stetter, G. Wanner, Microbiology 145, 3565 (1999).

    Google Scholar 

  65. S.J. Giovannoni, T.B. Britschgi, C.L. Moyer, K.G. Field, Nature (London) 345, 60 (1990).

    Article  ADS  Google Scholar 

  66. E.F. DeLong, Proc. Natl. Acad. Sci. USA. 89, 5685 (1992).

    Article  ADS  Google Scholar 

  67. C. Radax, C. Gruber, N. Bresgen, H. Wieland, H. Stan-Lotter, The 3rd Internat. Congr. Extremophiles, Hamburg, Germany, 2000.

    Google Scholar 

  68. S. Benlloch, S.G. Acinas, A.J. Martinez-Murcia, F. Rodriguez-Valera, Hydrobiologia 329, 19(1996).

    Article  Google Scholar 

  69. B.J. Javor, Hypersaline Environments: Microbiology and Biogeochemistry, Springer-Verlag, Berlin, 1989.

    Google Scholar 

  70. R.H. Vreeland, A.F. Piselli Jr, S. McDonnough, S.S. Meyers, Extremophiles 2, 321 (1998).

    Article  Google Scholar 

  71. G.A. Tomlinson, L.I. Hochstein, Can. J. Microbiol. 22, 587 (1976).

    Article  Google Scholar 

  72. R.Y. Morita (Ed.) Bacteria in Oligotrophy Environments. Starvation-Survival-Lifestyle, Chapman and Hall, New York, 1997.

    Google Scholar 

  73. H.M. Lappin-Scott, J.W. Costerton, Experientia 46, 812 (1990).

    Article  Google Scholar 

  74. E. Roedder, American Mineralogist 69, 413 (1984).

    Google Scholar 

  75. H.J. Dombrowski, Natur und Museum 92, 436 (1962).

    Google Scholar 

  76. C.F. Norton and W.D. Grant, J. Gen. Microbiol. 134, 1365 (1988).

    Google Scholar 

  77. N.A. Kostrikina, I.S. Zvyagintseva, and V.I. Duda, Arch. Microbiol. 156, 344 (1991).

    Article  Google Scholar 

  78. A.C. Wais, Curr. Microbiol. 12, 191 (1985).

    Article  Google Scholar 

  79. M.J. Kennedy, S.L.Reader, M.L. Swiercynski, Microbiology 140, 2513 (1994).

    Article  Google Scholar 

  80. R.H.Vreeland, W.D. Rosenzweig, D.W. Powers, Nature 407, 897 (2000).

    Article  ADS  Google Scholar 

  81. D.S. McKay, E.K. Gibson Jr, K.L. Thomas-Keprta, H. Vali, C.S. Romanek, S.J. Clemett, X.D.F. Chillier, C.R. Maechling, R.N. Zare, Science 273, 924 (1996).

    Article  ADS  Google Scholar 

  82. R.A. Kerr, Science 273, 864 (1996).

    Article  ADS  Google Scholar 

  83. L. Becker, D.P. Glavin, J.L. Bada, Geochim. Cosmochim. Acta 61, 475 (1997).

    Article  ADS  Google Scholar 

  84. T.O. Stevens, in: P.S. Amy, D.L. Haldeman (Eds.) The Microbiology of the Terrestrial Deep Subsurface, CRC Lewis Publishers, Boca Raton, 1997, pp. 205.

    Google Scholar 

  85. P.J. Boston, M.V. Ivanov, C.P. McKay, Icarus 95, 300 (1992).

    Article  ADS  Google Scholar 

  86. J.K. Fredrickson, D.P. Chandler, T.C. Onstott, SPIE Proc. 3111, 318 (1997).

    Article  ADS  Google Scholar 

  87. M.C. Malin, K.S. Edgett, Science 288, 2330 (2000).

    Article  ADS  Google Scholar 

  88. J.L. Gooding, Icarus 99, 28 (1992).

    Article  ADS  Google Scholar 

  89. D.J.Sawyer, M.D. McGehee, J. Canepa, C.B. Moore, Meteoritics & Planetary Sci., 35, 743 (2000).

    Article  ADS  Google Scholar 

  90. T.B. McCord, G.B. Hansen, F.P. Fanale, R.W. Carlson, D.L. Matson, T.V. Johnson, W.D. Smythe, J.K. Crowley, P.D. Martin, A. Ocampo, CA. Hibbitts, J.C. Granahan, the NIMS Team, Science 280, 1242 (1998).

    Article  ADS  Google Scholar 

  91. M.E. Zolensky, R.J. Bodnar, E.K. Gibson, L.E. Nyquist, Y. Reese, C.Y. Shih, H. Wiesman, Science 285, 1377 (1999).

    Article  ADS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kunte, H.J., Trüper, H.G., Stan-Lotter, H. (2002). Halophilic Microorganisms. In: Horneck, G., Baumstark-Khan, C. (eds) Astrobiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59381-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59381-9_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63957-9

  • Online ISBN: 978-3-642-59381-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics