Skip to main content

Yeast Cell-Free Translation Systems

  • Chapter
Cell-Free Translation Systems

Abstract

Translation in eukaryotes is well conserved among higher eukaryotes, such as mammals, and in lower eukaryotes, such as the yeast Saccharomyces cerevisiae. Since yeast cells are easy to handle and amenable to very powerful genetic and biochemical analysis, the yeast system represents an attractive model system for studies on the mechanism and regulation of eukaryotic translation. The first cell-free systems capable of initiating translation on exogenous mRNA were prepared from the yeast Saccharomyces cerevisiae in the late 1970’s. These extracts show cap- and poly(A)-dependent translation, whereby the cap structure and the poly(A) tail on the mRNA lead to synergistic stimulation. Yeast extracts can be made dependent on exogenous translation factors by inactivation of the endogenous factor activity through various means, including downregulation of factor synthesis, expression of conditional lethal factor or knock-out mutants and inhibition of factor activity by antibodies. Such systems have been used to extend and deepen our knowledge of the mechanism of translation initiation, protein targeting and translation termination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Altmann M, Sonenberg N, Trachsel H (1989) Translation in Saccharomyces cerevisiae: initiation factor 4E-dependent cell- free system. Mol. Cell. Biol. 9:4467–4472.

    CAS  Google Scholar 

  • Altmann M, Blum S, Wilson TMA, Trachsel H (1990a) The 5′-leader sequence of tobacco mosaic virus RNA mediates initiation factor-4E-independent, but still initiation-factor-4A-dependent translation in yeast extracts. Gene 91:127–129.

    Article  CAS  Google Scholar 

  • Altmann M, Blum S, Pelletier J, Sonenberg N, Wilson TMA, Trachsel H (1990b) Translation ini-tiation factor-dependent extract from Saccharomyces cerevisiae. Biochim. Biophys. Acta 1050:155–159.

    CAS  Google Scholar 

  • Altmann M, Muller PP, Wittmer B, Ruchti F, Lanker S, Trachsel H (1993) A Saccharomyces cerevisiaehomologue of mammalian translation initiation factor 4B contributes to RNA helicase activity. EMBO J. 12:3997–4003.

    CAS  Google Scholar 

  • Altmann M, Wittmer B, Methot N, Sonenberg N, Trachsel H (1995) The Saccharomyces cerevisiae translation initiation factor Tif3 and its mammalian homologue, eIF-4B, have RNA annealing activity. EMBO J. 14:3820–3827.

    CAS  Google Scholar 

  • Altmann M, Trachsel H (1997) Translation initiation factor-dependent extracts from yeast Saccharomyces cerevisiae. Methods: A Companion to Methods in Enzymology 11:343–352.

    Article  CAS  Google Scholar 

  • Asano K, Clayton J, Shalev A, Hinnebusch AG (2000) A multifactor complex of eukaryotic initi-ation factors, elF1, eIF2, eIF3, eIF5, and initiator tRNA(Met) is an important translation initiation intermediate in vivo. Genes Dev. 14:2534–2546.

    Article  CAS  Google Scholar 

  • Blum S, Mueller M, Schmid SR, Linder P, Trachsel H (1989) Translation in Saccharomyces cerevisiae: initiation factor 4A-dependent cell-free system. Proc. Natl. Acad. Sci. USA 86:6043–6046.

    Article  CAS  Google Scholar 

  • Chuang RY, Weaver PL Liu Z, Chang TH (1997) Requirement of the DEAD-box protein Dedlp for messenger RNA translation. Science 275:1468–1471.

    Article  CAS  Google Scholar 

  • Colthurst DR, Chalk P, Hayes M, Tuite MF (1991) Efficient translation of synthetic and natural mRNAs in an mRNA-dependent cell-free system from the dimorphic fungus Candida albicans. J. Gen. Microbiol. 137:851–857.

    CAS  Google Scholar 

  • Danaie P, Wittmer B, Altmann M, Trachsel H (1995) Isolation of a protein complex containing translation initiation factor Prt1 from Saccharomyces cerevisiae. J. Biol. Chem. 270:4288–4292.

    Article  CAS  Google Scholar 

  • Das S, Maitra U (2000) Mutational analysis of mammalian translation initiation factor 5 (eIF5): role of interaction between the beta subunit of eIF2 and eIF5 in eIF5 function in vitro and in vivo. Mol. Cell. Biol. 20:3942–3950.

    CAS  Google Scholar 

  • Das S, Ghosh R, Maitra U (2001) Eukaryotic translation initiation factor 5 functions as a GTPase-activating protein. J. Biol. Chem. 276:6720–6726.

    Article  CAS  Google Scholar 

  • Devchand M, Gwynne D, Buxton FP, Davies RW (1988) An efficient cell-free translation system from Aspergillus nidulans and in vitro translocation of prepro-alpha-factor across Aspergillus microsomes. Curr. Genet. 14:561–566.

    Article  CAS  Google Scholar 

  • Dominguez D, Kislig E, Altmann M, Trachsel H (2001) Structural and functional similarities between the central eukaryotic initiation factor (eIF)4A-binding domain of mammalian eIF4G and the eIF4A-binding domain of yeast eIF4G. Biochem. J. 355:223–230.

    Article  CAS  Google Scholar 

  • Gasior E, Herrera F, Sadnik I, McLaughlin CS, Moldave K (1979) The preparation and character¬ization of a cell-free system from Saccharomyces cerevisiae that translates natural messenger ribonucleic acid. J. Biol. Chem. 254:3965–3969.

    CAS  Google Scholar 

  • Hershey JWB, Merrick, WC (2000) The pathway and mechanism of initiation of protein synthesis, p. 33–88. In N. Sonenberg, J.W.B. Hershey and M.B. Mathews (ed), Translational control of gene expression. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.

    Google Scholar 

  • Hofbauer R, Fessl F, Hamilton B, Ruis H (1982) Preparation of a mRNA-dependent cell-free translation system from whole cells of Saccharomyces cerevisiae. Eur. J. Biochem. 122:199–203.

    Article  CAS  Google Scholar 

  • Iizuka N, Najita L, Franzusoff A, Sarnow P (1994) Cap-dependent and cap-independent transla-tion by internal initiation of mRNAs in cell-free extracts prepared from Saccharomyces cerevisiae. Mol. Cell. Biol. 14:7322–7330.

    CAS  Google Scholar 

  • Iizuka N, Sarnow P (1997) Translation-competent extracts from Saccharomyces cerevisiae: effects of L-A RNA, 5′ cap, and 3′ poly(A) tail on translational efficiency of mRNAs. Methods 11:353–360

    Article  CAS  Google Scholar 

  • Kreutzfeldt C, Lochmann ER (1983) Preparation of a cell-free extract from yeast that is active in protein synthesis. FEMS Microbiol. Letts. 16:179–182.

    Article  CAS  Google Scholar 

  • Lafontaine DL, Preiss T, Tollervey D (1998) Yeast 18S rRNA dimethylase Dim1p: a quality control mechanism in ribosome synthesis? Mol. Cell. Biol. 18:2360–2370.

    CAS  Google Scholar 

  • Mandel T, Trachsel H (1989) Yeast Saccharomyces cerevisiaecell-free translation: the inhibition of translation by high temperature is reversible. Biochim. Biophys. Acta 1007: 80–83.

    Google Scholar 

  • Maiti T, Das S, Maitra (2000) Isolation and functional characterization of a temperature-sensitive mutant of the yeast Saccharomyces cerevisiaein translation initiation factor eIF5: an eIF5-dependent cell-free translation system. Gene 244: 109–118.

    Article  CAS  Google Scholar 

  • McCarthy JE (1998) Posttranscriptional control of gene expression in yeast. Microbiol. Mol. Biol. Rev. 62:1492–1553.

    CAS  Google Scholar 

  • Neff CL, Sachs AB (1999) Eukaryotic translation initiation factors 4G and 4A from Saccharomyces cerevisiaeinteract physically and functionally. Mol. Cell. Biol. 19:5557–5564.

    CAS  Google Scholar 

  • Pain VM (1996) Initiation of protein synthesis in eukaryotic cells. Eur. J. Biochem. 236:747–771.

    Article  CAS  Google Scholar 

  • Pelham HR, Jackson RJ (1976) An efficient mRNA-dependent translation system from reticulocyte lysates. Eur. J. Biochem. 67:247–256.

    Article  CAS  Google Scholar 

  • Preiss T, Hentze MW (1998) Dual function of the messenger RNA cap structure in poly(A)-tail-promoted translation in yeast. Nature 392:516–520

    Article  CAS  Google Scholar 

  • Preiss T, Muckenthaler M, Hentze MW (1998) Poly(A)-tail-promoted translation in yeast: implications for translational control. RNA 4:1321–1331.

    Article  CAS  Google Scholar 

  • Rothblatt JA, Meyer DI (1986) Secretion in yeast: reconstitution of the translocation and glycosylation of alpha-factor and invertase in a homologous cell-free system. Cell 44:619–628.

    Article  CAS  Google Scholar 

  • Tarun SZ, Sachs AB (1995) A common function for mRNA 5′and 3′ ends in translation initiation in yeast. Genes Dev. 9:2997–3007.

    Article  CAS  Google Scholar 

  • Tarun SZ, Wells SE, Deardorff JA, Sachs AB (1997) Translation initiation factor eIF4G mediates in vitro poly(A) tail-dependent translation. Proc. Natl. Acad. Sci. USA 94:9046–9051.

    Article  CAS  Google Scholar 

  • Tuite MF, Plesset J, Moldave K, McLaughlin CS (1980) Faithful and efficient translation of homologous and heterologous mRNAs in an mRNA-dependent cell-freee system from Saccharomyces cerevisiae. J. Biol. Chem. 255:8761–8766.

    CAS  Google Scholar 

  • Tuite MF, Cox BS, McLaughlin CS (1983) in vitro nonsense suppression in [psi+] and [psi-] cell- free lysates of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 80:2824–2828.

    Google Scholar 

  • Tuite MF, Plesset J (1986) mRNA-dependent yeast cell- free translation systems: theory and practice. Yeast 2:35–52.

    Google Scholar 

  • Valasek L, Trachsel H, Hasek J, Ruis H (1998) Rpgl, the Saccharomyces cerevisiaehomologue of the largest subunit of mammalian translation initiation factor 3, is required for translational activity. J. Biol. Chem. 273:21253–21260.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelbreg

About this chapter

Cite this chapter

Altmann, M., Trachsel, H. (2002). Yeast Cell-Free Translation Systems. In: Spirin, A.S. (eds) Cell-Free Translation Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59379-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59379-6_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63956-2

  • Online ISBN: 978-3-642-59379-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics