Advertisement

Imatinib (STI571) for the Treatment of Chronic Myelogenous Leukemia (CML)

  • A. Hochhaus
  • T. Lahaye
  • S. Kreil
  • U. Berger
  • P. Paschka
  • M. C. Müller
  • C. Kuhn
  • A. Weisser
  • K. Merx
  • R. Hehlmann
Conference paper
Part of the Haematology and Blood Transfusion Hämatologie und Bluttransfusion book series (HAEMATOLOGY, volume 41)

Summary

Chronic myelogenous leukemia (CML) is characterized by a reciprocal translocation between long arms of chromosomes 9 and 22 that produces the Philadelphia chromosome. The resulting chimeric BCR-ABL fusion gene is thought to be the molecular cause of the disease. Typical symptom is the marked expansion of myeloid cells that mature normally. The natural history of CML is progression from chronic phase to a rapidly fatal blast crisis within three to five years. Blast crisis is often preceded by an accelerated phase in which increasing doses of initial therapy are required. Treatment options have become more complex in recent years, allogeneic stem cell transplantation is still the only curative option. Recent data show that interferonalpha prolongs life in CML patients, as compared to chemotherapy. New therapies based on the causative molecular abnormality of CML are showing great promise. Imatinib (formerly STI571; Glivec) is an orally administered selective inhibitor of the BCR-ABL tyrosine kinase. Preliminary results from three international phase 11 studies are promising with good hematological and cytogenetical response rates and manageable side effects. Combination with cytostatic drugs may help to overcome the problem of secondary resistance in advanced disease. Longterm observation is required to demonstrate whether imatinib will prolong life in comparison with other methods of treatment.

Keywords

Chronic Myeloid Leukemia Chronic Myelogenous Leukemia Allogeneic Stem Cell Transplantation Blast Crisis Cytogenetic Response 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barthe C, Cony-Makhoul P, Melo JV et al (2001) Roots of clinical resistance to STI-571 cancer therapy. Science 293: 2163a.CrossRefGoogle Scholar
  2. 2.
    Buchdunger E, Cioffi CL, Law N et al. (2000) Abl protein-tyrosine kinase inhibitor STI571 inhibits in vitro signal transduction mediated by c-kit and platelet-derived growth factor receptors. J.Pharmacol.Exp.Ther. 295: 139 – 145.PubMedGoogle Scholar
  3. 3.
    Buchdunger E, Zimmermann J, Mett H et al. (1996) Inhibition of the Abl protein-tyrosine kinase invitro and in vivoby a 2-phenylaminopyrimidine derivative. Cancer.Res. 56: 100 – 104.PubMedGoogle Scholar
  4. 4.
    Deininger MWG, Goldman JM, and Melo JV (2000) The molecular biology of chronic myeloid leukemia. Blood. 96: 3343 – 3356.PubMedGoogle Scholar
  5. 5.
    Deininger MWN, Bose S, Gora-Tybor J et al (1998) Selective induction of leukemia-associated fusion genes by high-dose ionizing radiation. Cancer Res 58: 421 – 425.PubMedGoogle Scholar
  6. 6.
    Deininger MWN, Goldman JM, Lydon N, Melo JV (1997) The tyrosine kinase inhibitor CGP57148B selectively inhibits the growth of BCR-ABL-positive cells. Blood 90: 3691 – 3698.PubMedGoogle Scholar
  7. 7.
    Druker B (2001) Signal transduction inhibition: Results from phase I clinical trials in chronic myeloid leukemia. Semin Hematol 38;Supp. 8: 9 – 14.PubMedCrossRefGoogle Scholar
  8. 8.
    Druker BJ, Sawyers CL, Kantarjian H et al. (2001) Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N.Engl.J.Med. 344: 1038 – 1042.PubMedCrossRefGoogle Scholar
  9. 9.
    Druker BJ, Talpaz M, Resta DJ et al. (2001) Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N.Engl.J.Med. 344: 1031 – 1037.PubMedCrossRefGoogle Scholar
  10. 10.
    Druker BJ, Tamura S, Buchdunger E et al (1996): Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat Medic 2: 561 – 566.CrossRefGoogle Scholar
  11. 11.
    Goldman JM, Druker BJ (2001) Chronic myeloid leukemia: current treatment options. Blood 98: 2039 – 2042.PubMedCrossRefGoogle Scholar
  12. 12.
    Goldman JM, Talpaz M, Silver RT et al. (2001) Treatment of adult Philadelphia chromosome positive chronic myeloid leukaemia (CML) in accelerated phase with ST1571: Update of phase lI results. Hematol.J. 2, Supp. 1: 199 – 200.Google Scholar
  13. 13.
    Gorre ME, Mohammed M, Ellwood K et al (2001) Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science 293: 876 – 880.PubMedCrossRefGoogle Scholar
  14. 14.
    Hehlmann R, Hochhaus A, Berger U, and Reiter A. (2000) Current trends in the management of chronic myelogenous leukemia. Ann.Hematol. 79: 345 – 354.PubMedCrossRefGoogle Scholar
  15. 15.
    Heinrich MC, Griffith DJ, Druker BJ et al. (2000) Inhibition of c-kit receptor tyrosine kinase activity by STI571, a selective tyrosine kinase inhibitor. Blood. 96: 925 – 932.PubMedGoogle Scholar
  16. 16.
    Hochhaus A, Kantarjian HM, Sawyers CL et al. (2001) Glivec™(Imatinib mesylate, STI571) induces hematologic and cytogenetic responses in the majority of patients with chronic myeloid leukemia in late chronic phase: Results of a phase II study. Hematol.J. 2, Supp. 1: 199.Google Scholar
  17. 17.
    Hochhaus A, Kreil S, Corbin A et al (2001) Roots of clinical resistance to STI-571 cancer therapy. Science 293: 2163a.CrossRefGoogle Scholar
  18. 18.
    . Hochhaus A, Sawyers CL, Feldman E et al. (2001) Glivec™ (Imatinib mesylate, STI571) induces hematologic and cytogenetic responses in patients with chronic myeloid leukemia in myeloid blast crisis: Results of a multicenter phase II study. Hematol.J. 2, Supp. 1: 24.Google Scholar
  19. 19.
    Hochhaus A, Weisser A, La Rosée P et al. (2000) Detection and quantification of residual disease in chronic myelogenous leukemia. Leukemia. 14: 998 – 1005.PubMedCrossRefGoogle Scholar
  20. 20.
    . Kano Y, Akutsu M, Tsunoda S et al. (2001) In vitro cytotoxic effects of a tyrosine kinase inhibitor STI571 in combination with commonly used antileukemic agents. Blood. 97: 1999 – 2007.PubMedCrossRefGoogle Scholar
  21. 21.
    le Coutre P, Mologni L, Cleris L et al (1999) In vivo eradication of human BCR/ABL-positive leukemia cells with an ABL kinase inhibitor. J Natl Cancer Inst 91:163–168.PubMedCrossRefGoogle Scholar
  22. 22.
    le Coutre P, Tassi E, Varella-Garcia M et al (2000) Induction of resistance to the Abelson inhibitor ST1571 in human leukemic cells through gene amplification. Blood 95: 1758 – 1766.PubMedGoogle Scholar
  23. 23.
    Mahon FX, Deininger MWN, Schultheis B et al. (2000) Selection and characterization of BCR-ABL positive cell lines with differential sensitivity to the tyrosine kinase inhibitor STI571: diverse mechanisms of resistance. Blood. 96: 1070 – 1079.PubMedGoogle Scholar
  24. 24.
    Melo JV (1996) The molecular biology of chronic myeloid leukaemia. Leukemia 10:751–756.PubMedGoogle Scholar
  25. 25.
    Mughal TI and Goldman JM. (2001) Chronic myeloid leukemia: STI 571 magnifies the thera¬peutic dilemma. Eur.J.Cancer. 37:561–568.PubMedCrossRefGoogle Scholar
  26. 26.
    . Okuda K, Weisberg E, Gilliland DG, and Griffin JD (2001) ARG tyrosine kinase activity is inhibited by ST1571. Blood. 97:2440–2448.PubMedCrossRefGoogle Scholar
  27. 27.
    Paschka P, Kreil S, Lahaye T et al (2001) Response monitoring in CML patients treated with the tyrosine kinase inhibitor ST1571 (GlivecR) by molecular cytogenetics and quantitative RT-PCR. Hematol J 2:Supp. 1:26.Google Scholar
  28. 28.
    Sawyers CL (1999) Chronic myeloid leukemia. N Engl J Med 340:1330–1340.PubMedCrossRefGoogle Scholar
  29. 29.
    Silver RT, Woolf SH, Hehlmann R et al (1999) An evidence-based analysis of the effect of busulfan, hydroxyurea, interferon, and allogeneic bone marrow transplantation in treating the chronic phase of chronic myeloid leukemia: Developed for the American Society of Hematology. Blood 94:1517–1536.PubMedGoogle Scholar
  30. 30.
    Thiesing JT, Ohno-Jones S, Kolibaba KS, and Druker BJ. (2000) Efficacy of ST1571, an Abl tyrosine kinase inhibitor, in conjunction with other antileukemic agents against Bcr-Abl-positive cells. Blood. 96:3195–3199.PubMedGoogle Scholar
  31. 31.
    Topaly J, Zeller W, and Fruehauf S. (2001) Synergistic activity of the new ABL-specific tyrosine kinase inhibitor ST1571 and chemotherapeutic druigs on BCR-ABL-positivbe chronic myelogenous leukemia cells. Leukemia. 15:342–347.PubMedCrossRefGoogle Scholar
  32. 32.
    Weisberg E and Griffin JD (2000) Mechanism of resistence to the ABL tyrosine kinase inhibitor ST1571 in BCRIABL-transformed hematopoietic cell lines. Blood. 95:3498–3505.PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • A. Hochhaus
    • 1
  • T. Lahaye
    • 1
  • S. Kreil
    • 1
  • U. Berger
    • 1
  • P. Paschka
    • 1
  • M. C. Müller
    • 1
  • C. Kuhn
    • 1
  • A. Weisser
    • 1
  • K. Merx
    • 1
  • R. Hehlmann
    • 1
  1. 1.Fakultät für Klinische Medizin Mannheim111. Medizinische Universitätsklinik,Universität HeidelbergMannheimGermany

Personalised recommendations