Replication of Dissipative Solitons by Many-Particle Interaction

  • Andreas W. Liehr
  • Andrei S. Moskalenko
  • Michael C. Röttger
  • Jürgen Berkemeier
  • Hans-Georg Purwins
Conference paper

Abstract

We are investigating a three-component reaction-diffusion model, which has been established as phenomenological model for pattern formation processes in direct current semiconductor-gas-discharge systems. Concerning two-dimensional systems we are able to reproduce the experimentally observed phenomena of replication of dissipative solitons by many-particle interaction. In three-dimensional systems these phenomena lead to the formation of complex molecules consisting of single dissipative solitons.

Keywords

Soliton Pyramid Dinates Bide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bode, M.; Liehr, A. W.; Schenk, C. P.; Purwins, H.-G.: Interaction of dissipative solitons: particle-like behaviour of localized structures in a three-component reaction-diffusion system. In: Physica D 161 (2002), Nr. 1-2, S. 45-66Google Scholar
  2. 2.
    Hodgkin, A. L.; Huxley, A. F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. In: Journal of Physiology 117 (1952), S. 500-544Google Scholar
  3. 3.
    Ouyang, Q. Castets, V.; Boissonade, J.; Roux, J. C.; Kepper, P. D.; Swinney, H. L.: Sustained patterns in chlorite-iodide reactions in a one-dimensional reactor. In: Journal of Chemical Physics 95 (1991), Nr. 1, S. 351-360CrossRefGoogle Scholar
  4. 4.
    Rotermund, H. H.; Jakubith, S.; von Oertzen, A.; Ertl, G.: Solitons in a surface reaction. In: Physical Review Letters 66 (1991), Nr. 23, S. 3083-3086Google Scholar
  5. 5.
    Stegeman, G. I. Segev, Optical Spatial Solitons and Their Interaction: Universality and Diversity. In: Science 286 (1999), Nr. 5444, S. 1518-1523Google Scholar
  6. 6.
    Schapers, B.; Feldmann, M.; Ackemann, T.; Lange, W.: Interaction of Localized Structures in an Optical Pattern-Forming System. In: Physical Review Letters 85 (2000), S. 748-751Google Scholar
  7. 7.
    Bel’kov, V.V.; Hirschinger, J.; Novák, V.; Niedernostheide, F.J.; Ganichev, Prettl, S. D.; Pattern formation in semiconducters. In: Nature 397 (1999), Nr. 4, S. 398Google Scholar
  8. 8.
    AOKI, K.:Nonlinear Dynamics and Chaos in Semiconductors. Bristol and Philadelphia: Institute of Physics Publishing, 2001Google Scholar
  9. 9.
    SCHöLL, Eckehard: Cambridge Nonlinear Science Series. Bd.10 Nonlinear Spatio-Temporal Dynamics and Chaos in Semiconductors. Cambridge: Cambridge University Press,2001 Google Scholar
  10. 10.
    PURWINS, H.-G.; ASTROV Yu BRAUER I.: Self-Organized Quasi Particles and Other Patterns in Planar Gas-Discharge Systems. InDING, M (Hrsg.);DITTO, W. L. (Hrsg.);PECORA, L. M. (Hrsg.);SPANO, M. L. (Hrsg.):The 5th Experimental Chaos Conference. Singapore: World Scientific, 2001, S. 3–13Google Scholar
  11. 11.
    RUSSELL John S.: Report on Waves. In: Report of the fourteenth meeting of the British Association for the Advancement of Science. York 1844, 1845, S. 311–390, FigXLVII-LVII Google Scholar
  12. 12.
    REMOISSENET , Michel Waves Called Solitons: Concepts and Experiments3 Berlin: Springer, 1999 Google Scholar
  13. 13.
    Ammelt, E.; Astrov, Yu.; Purwins, H.-G.: Stripe Turing Structures in a Two-Dimensional Gas Discharge System. In: Physical Review E 55 (1997), Nr. 6, S. 6731-6740Google Scholar
  14. 14.
    Astrov, Yuri A.; Purwins, Hans-Georg: Plasma Spots in a Gas Discharge System: Birth, Scattering and Formation of Molecules. In: Physics Letters A 283 (2001), S. 349-354Google Scholar
  15. 15.
    Liehr, A. W.; Moskalenko, A. S.; Astrov, Yu. A.; Bode, M.; Purwins, H.-GRotating Bound States of Dissipative Solitons 2002. - submitted to Physcial Review LettersGoogle Scholar
  16. 16.
    Schenk, C. P.; Or-Guil, M.; Bode, M.; Purwins, H.-G .: Interacting pulses in three-component reaction-diffusion-systems on two-dimensional domains. In: Physical Review Letters 78 (1997), S. 3781-3783Google Scholar
  17. 17.
    Purwins, H.-G.; Klempt, G.; Berkemeier, J.: Temporal and spatial structures of nonlinear dynamical systems. In: Festkörperprobleme 27 (1987), S. 27-61Google Scholar
  18. 18.
    LIEHR, A. W.; BODE, M.; PURWINS, H.-G.: The Generation of Dissipative Quasi-Particles near Turing’s Bifurcation in Three-Dimensional Reaction-Diffusion-Systems. In:KRAUSE, E (Hrsg.);JäGER, W (Hrsg.):High Performance Computing in Science and Engineering 2000, Springer2001 S425439 Google Scholar
  19. 19.
    Or-Guil, M.; Ammelt, E.; Niedernostheide, F.-J.; Purwins, H.-G.: Pattern formation in activator-inhibitor systems. In: Doelman, A. (Hrsg.); van Harten, A. (Hrsg.): Pitman Research Notes in Mathematics Series Bd. 335. Longman, 1995, S. 223-237Google Scholar
  20. 20.
    Or-Guil, M.; Bode, M.; Schenk, G. P.; Purwins, H.-G.: Spot bifurcations in three-component reaction-diffusion systems: The onset of propagation. In: Physical Review E 57 (1998), Nr. 6, S. 6432-6437Google Scholar
  21. 21.
    Turing, A. M.: The chemical basis of morphogenesis. In: Phil. Trans. Roy. S oc. B 237 (1952), S. 37-72Google Scholar
  22. 22.
    Schenk, e. P.; Schütz, P.; Bode, M.; Purwins, H.-G.: Interaction of self-organized quasiparticles in a two-dimensional reaction-diffusion-system: The formation of molecules. In: Physical Review E 57 (1998), Nr. 6, S. 6480-6486Google Scholar
  23. 23.
    SCHENK, C P.;LIEHR, A. W.; BODE, M.; PURWINS, H.-G.: Quasi-Particles in a Three-Dimensional Three-Component Reaction-Diffusion System. In:KRAUSE E. (Hrsg.)JäGER W. (Hrsg.)High Performance Computing in Science and Engineering99, Springer,2000 S354364 Google Scholar
  24. 24.
    Ohta, T.; Mimura, M.; Kobayashi, R.: Higher-Dimensional Localized Patterns in Excitable Media. In: Physica D 34 (1989), S. 115-144Google Scholar
  25. 25.
    Message Passing Interface ForumMPI: A Message-Passing Interface Standard 1995Google Scholar
  26. 26.
    Astrov, Yu A.; Portsel, L. M.; Marchenko, V. M.; Liehr, A. W.; Purwins, H.-G.: Dissipative solitons and their interaction in the D.C. gas-discharge system. 2002. - in preparationGoogle Scholar
  27. 27.
    Willebrand, H.; Niedernostheide, F.-J.; Ammelt, E.; Dohmen, R.; Purwins, H.-G.: Spat io-Temporal Oscillations During Filament Splitting in Gas Discharge Systems. In: Physics Letters A 153 (1991), Nr. 8, S. 437Google Scholar
  28. 28.
    Lee, Kyoung-Jin; McCormick, William D.; Pearson, John E.; Swinney, Harry L.: Experimental observation of self-replicating spots in a reaction- diffusion system. In: Nature 369 (1994), S. 215-218Google Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • Andreas W. Liehr
    • 1
  • Andrei S. Moskalenko
    • 1
    • 1
  • Michael C. Röttger
    • 1
  • Jürgen Berkemeier
    • 1
  • Hans-Georg Purwins
    • 1
  1. 1.Institute for Applied PhysicsMünsterGermany

Personalised recommendations