Skip to main content

Numerical High Lift Research — NHLRes Annual Review 2001

  • Conference paper
High Performance Computing in Science and Engineering ’02

Abstract

The project NHLRes is concerned with the simulation of aircraft aerodynamics and thus belongs to the research field of computational fluid dynamics (CFD) for aerospace applications. NHLRes comprises the numerical simulation of the viscous compressible flow around transport aircraft high lift configurations. The investigations are based on the solution of the Reynolds-averaged Navier-Stokes equations using a finite volume parallel solution algorithm with an unstructured data concept. The project consists of two parts representing a typical analysis as well as an optimization task for selected three-dimensional high lift flow problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Rudnik, R.; Ronzheimer, A.; Raddatz, J.: “Numerical Flow Simulation for a Wing/Fuselage Transport Configuration with Deployed High Lift system” in Notes on Numerical Fluid Mechanics, Vol. 72, pp. 363–370, Vieweg-Verlag, Braunschweig/Wiesbaden, 1999.

    Google Scholar 

  2. Rudnik, R.; Melber, S.; Ronzheimer, A.; Brodersen, O.: “Three-Dimensional Navier-Stokes Simulations for Transport Aircraft High Lift Configurations.” Journal of Aircraft, Vol. 38, pp. 895–903, 2001.

    Article  Google Scholar 

  3. Melber, S.; Rudnik, R.; Ronzheimer, A.: “Structured and Unstructured Numerical Simulation in High Lift Aerodynamics.” Workshop on EU-Research on Aerodynamic Engine/Aircraft Integration for Transport Aircraft,27 September 2000, DLR Braunschweig, 2000, pp. 13-1–13-10.

    Google Scholar 

  4. Melber, S.: “3D RANS Simulations for High Lift Analysis of Transport Aircraft Configurations.” Notes on numerical fluid mechanics, Volume 77, Springer Verlag, Berlin, Heidelberg, New York, 2002, pp. 27–34.

    Google Scholar 

  5. Rogers, S.E.; Roth, K.; Cao, V.Hoa; Slotnick, J.R; Whilock, M.; Nash, S.M.; Baker, M.D.: “Computation of viscous Flow for a Boeing 777 Aircraft in Landing Conf.” AIAA paper 2000 - 4221, 2000.

    Google Scholar 

  6. Mavriplis, D.J.: “Parallel Performance Investigations of an Unstructured Mesh Navier-Stokes Solver” ICASE Report No. 2000 - 13, March 2000.

    Google Scholar 

  7. Kiock, R.: “The ALVAST Model of DLR” DLR IB 129-96/22, 1996

    Google Scholar 

  8. Kallinderis, Y.: “Hybrid Grids and Their Applications.” Handbook of Grid Generation, CRC Press, Boca Raton/London/New York/Washington, D.C., pp. 25-1–25 - 18, 1999

    Google Scholar 

  9. Puffert-Meissner, W .: “ALVAST Half-Model Investigations in the Low-Speed wind-tunnel Braunschweig” DLR IB 129-95/11, 1995

    Google Scholar 

  10. Puffert-Meissner, W.: “ALVAST Half-Model wind-tunnel Investigations and Comparison with Full-Span Model Results.” DLR IB 129-96/20, 1996

    Google Scholar 

  11. Kroll, N.; Rossow, C.-C.; Becker, K.; Thiele, F.: “MEGAFLOW–A Numerical Flow Simulation System.” 21st ICAS congress, 1998, Melbourne, 13.9.– 18.9.1998, ÏCAS-98-2. 7. 4, 1998.

    Google Scholar 

  12. Earnshaw, P.B.; Green, A.R.; Hardy, B.C.; Jelly, A.H.: “A Study of the use of Half-Models in High-Lift Wind-Tunnel Testing.” AGARD CP 515, Paper 20, 1993.

    Google Scholar 

  13. Milholen II, W.E.: “A Design Methodology for Semi-Span Model Mounting Geometries.” AIAA-paper 98 - 0758, 1998.

    Google Scholar 

  14. Haines, A.B.: “Scale Effects on Aircraft and Weapon Aerodynamics.” AGAR- Dograph 323, 1994, pp. 63.-65.

    Google Scholar 

  15. Radespiel, R.; Türkei, E.; Kroll, N.: “Assessment of Preconditioning Methods.” DLR IB 95/29, 1995.

    Google Scholar 

  16. Wild, J.: “Numerische Optimierung von zweidimensionalen Hochauftriebssystemen durch Lösung der Navier-Stokes-Gleichungen” PhD-Thesis, TU Braunschweig, published as DLR-FB 2001 - 11, 2001.

    Google Scholar 

  17. Johnson, P.L.; Jones, K.M.; Madson M.D.: “Experimental Investigation of a Simplified 3D High Lift Configuration in Support of CFD Validation” AIAA Paper 2000 - 4217, 2000.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Melber, S., Wild, J., Rudnik, R. (2003). Numerical High Lift Research — NHLRes Annual Review 2001. In: Krause, E., Jäger, W. (eds) High Performance Computing in Science and Engineering ’02. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59354-3_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59354-3_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63947-0

  • Online ISBN: 978-3-642-59354-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics