Thermodynamics and Dynamics of Correlated Electron Systems

  • Catia Lavalle
  • M. Rigol
  • M. Feldbacher
  • Fakher F. Assaad
  • Alejandro Muramatsu
Conference paper


Based on state of the art Quantum Monte Carlo simulations, we investigate the metallic states of the one-dimensional t-J model and of a depleted Kondo lattice model in two dimensions. In the one-dimensional case, it is known that correlation effects invalidate the Fermi liquid picture and that the elementary excitations are spinons and holons carrying separately the charge and spin of the electron. In this dimension we will present new results on the single particle spectral function and discuss the implications of spin-charge separation on this quantity. The Kondo lattice model describes heavy fermion materials which generically have Fermi liquid ground states but with effective masses up to three orders of magnitude larger that the bare electron mass. On the basis of numerical simulations, we will show how this heavy fermion state comes about and set the emphasis on the coherence temperature.


Heavy Fermion Fermi Liquid Elementary Excitation Spin Susceptibility Correlate Electron System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Khaliullin, JETP Lett.52, 389 (1990).Google Scholar
  2. 2.
    G. Sugiyama and S. E. Koonin, Anals of Phys.168, 1 (1986).CrossRefGoogle Scholar
  3. 3.
    R. Blankenbecler, D. J. Scalapino, and R. L. Sugar, Phys. Rev. D24, 2278 (1981).CrossRefGoogle Scholar
  4. 4.
    H. G. Evertz, inNumerical Methods for Lattice Quantum Many-Body Problems, Frontiers in Physics, edited by D. J. Scalapino (Addison-Wesley Publishing Company, Redwood City, 1997 ).Google Scholar
  5. 5.
    M. Brunner, F. F. Assaad, and A. Muramatsu, Eur. Phys. J. B16, 209 (2000).CrossRefGoogle Scholar
  6. 6.
    M. Brunner, F. F. Assaad, and A. Muramatsu, Phys. Rev. B62, 12395 (2000).CrossRefGoogle Scholar
  7. 7.
    M. Brunner, S. Capponi, F. F. Assaad, and A. Muramatsu, Phys. Rev. B 63, R180511 (2001).CrossRefGoogle Scholar
  8. 8.
    M. Jarrell and J. Gubernatis, Physics Reports269, 133 (1996).MathSciNetCrossRefGoogle Scholar
  9. 9.
    R. Eder and Y. Ohta, Phys. Rev. B56, 2542 (1997).CrossRefGoogle Scholar
  10. 10.
    J. Favand, S. Haas, K. Pene, F. Mila, and E. Dagotto, Phys. Rev. B55, R4859 (1997).CrossRefGoogle Scholar
  11. 11.
    F. F. Assaad, Phys. Rev. B 83, 796 (1999)CrossRefGoogle Scholar
  12. 12.
    S. Capponi and F. F. Assaad, Phs. Rev. B 63, 155113 (2001).Google Scholar
  13. 13.
    M. Feldbacher and F. F. Assaad, Phys. Rev. B63, 73105 (2001).CrossRefGoogle Scholar
  14. 14.
    F. F. Assaad, Phys. Rev. B 65, 115104 (2002).Google Scholar
  15. 15.
    C. Lavalle, M. Brunner, F. F. Assaad, and A. Muramatsu,High Performance Computing in Science and Engineering ’00 (Springer-Verlag, Berlin, 2001), pp. 143–154.CrossRefGoogle Scholar
  16. 16.
    E. Fradkin,Field Theories of condensed matter systems, Frontiers in Physics( Addison-Wesley Publishing Company, Redwood City, 1991 ).Google Scholar
  17. 17.
    A. C. Hewson,The Kondo Problem to Heavy Fermions, Cambridge Studies in Magnetism(Cambridge Universiy Press, Cambridge, 1997) Google Scholar
  18. 18.
    C. Huscroft, R. Gass, and M. Jarrell, Phys. Rev. B61, 9300 (2000).CrossRefGoogle Scholar
  19. 19.
    A. Sumiyama, Y. Oda, H. Nagano, Y. Onuki, K. Shibutani, and T. Komatsubara, J. Phys. Soc. Jpn.55, 1294 (1986).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Catia Lavalle
    • 1
  • M. Rigol
    • 1
  • M. Feldbacher
    • 1
  • Fakher F. Assaad
    • 1
    • 2
  • Alejandro Muramatsu
    • 1
    • 2
  1. 1.Institut für Theoretische Physik IIIUniversität StuttgartGermany
  2. 2.Max Planck institute for solid state researchGermany

Personalised recommendations