Skip to main content

Molecular Whole-Body Cancer Staging Using Positron Emission Tomography: Consequences for Therapeutic Management and Metabolic Radiation Treatment Planning

  • Conference paper
Molecular Staging of Cancer

Abstract

A prospective analysis was performed in 124 non-small cell lung cancer patients to determine the role of F-18 fluorodeoxyglucose (FDG)-positron emission tomography (PET) for molecular (metabolic) staging (n=63), therapy monitoring after induction-chemotherapy (n=34), and conformai radiation treatment planning (n=27). Staging by FDG-PET was significantly more accurate than CT (p<0.00l) and changed therapeutic management in 52% of all patients. After induction-chemotherapy, patients with complete metabolic remission histologically did not show vital tumor cells in contrast to patients with metabolic partial remission or progressive disease. Metabolic radiation treatment planning by PET led to smaller planning target volumes (PTVs) for radiation therapy (between 3% and 21% in 25/27 patients), resulting in a reduction of dose exposure to healthy tissue. In two patients, PET-PTV was larger than CT-based PTV, since PET detected lymph node metastases smaller than 1 cm. FDG-PET provides clinically important information; changes therapeutic management, can predict noninvasively effectiveness of chemotherapy, and may lead to better tumor control with less radiation-induced toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baum RP, Schmuecking M, Plichta K, Presselt N, Bonnet R, Lopatta E, Niesen A, Przetak C, Leonhardi J (2000) Staging of non small cell lung cancer (NSCLC) — is PET really clinically important or just a research tool? J Nucl Med 41:293P

    Google Scholar 

  2. Baum RP, Bonnet RB, Presselt N, Leonhardi J (2001) Positronenemissionstomographie (PET) mit F-18-FDG in der Diagnostik des Bronchialkarzinoms und zur Dignitätsabklärung von pulmonalen Raumforderungen. Nuklearmediziner 24:9–23

    Google Scholar 

  3. Baum RP, Rust M, Adams S, Strassmann G, Berekfeld J, Wagner R, Hertel A, Hör G (1996) Influence on patients’ management by whole-body F-18 FDG PET for preoperative staging of non small cell lung cancer. J Nucl Med 37:121P

    Google Scholar 

  4. Byhardt RW, Martin L, Pajak TF, Shin KH, Emami B, Cox JD (1993) The influence of field size and other treatment factors on pulmonary toxicity following hyperfractionated irradiation for inoperable non-small lung cancer (NSCLC) — analysis of a Radiation Therapy Oncology Group (RTOG) protocol. Int J Radiat Oncol Biol Phys 27:537–544

    Article  CAS  Google Scholar 

  5. Cai J, Chu JC, Recine D, Sharma M, Nguyen C, Rodebaugh R, Saxena VA, Ali A (1999) CT and PET lung imaging registration and fusion in radiotherapy treatment planning using the chamfer-matching method. Int J Radiat Oncol Biol Phys 43:883–891

    Article  PubMed  CAS  Google Scholar 

  6. Debois M, Fossard A, Vansteenkiste J, De Wever W, Verschakelen J, Bogaerts J, Gatti G, Stroobants S, Dupont P, Huyskens D, Kutcher J, Vanuytsel J (1998) Impact of PET scan on the target volume in lung cancer radiotherapy planning. Radiother Oncol 48:13S

    Google Scholar 

  7. Emami B, Lyman J, Brown A, Coia L, Goitein M, Munzenrider JE, Shank B, Solin LJ, Wesson M (1991) Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys 21:109–122

    PubMed  CAS  Google Scholar 

  8. Erdi YE, Macapinlac H, Rosenzweig KE, Humm JL, Larson SM, Erdi AE, Yorke ED (2000) Use of PET to monitor the response of lung cancer to radiation treatment. Eur J Nucl Med 27:861–866

    Article  PubMed  CAS  Google Scholar 

  9. ICRU-Report 50, International Commission on Radiation Units and Measurements (1993) Prescribing, recording and reporting photon beam therapy. 1st edn. ICRU-Publications, Bethesda, Maryland USA

    Google Scholar 

  10. Graham MV, Purdy JA, Emami B, Harms W, Bosch W, Lockett MA, Perez CA (1999) Clinical dose-volume histogram analysis for pneumonitis after 3D treatment for non-small cell lung cancer (NSCLC). Int J Radiat Oncol Biol Phys 45:323–329

    PubMed  CAS  Google Scholar 

  11. Graham MV, Jain NL, Kahn MG, Drzymala RE, Purdy JA (1996) Evaluation of an objective plan-evaluation model in the three-dimensional treatment of nonsmall cell lung cancer. Int J Radiat Oncol Biol Phys 34:469–474

    Article  PubMed  CAS  Google Scholar 

  12. Kiffer JD, Berlangieri SU, Scott AM, Quong G, Feigen M, Schumer W, Clarke CP, Knight SR, Daniel FJ (1998) The contribution of 18F-fluoro-2-deoxy-glucose positron emission tomographic imaging to radiotherapy planning in lung cancer. Lung Cancer 19:167–177

    Article  PubMed  CAS  Google Scholar 

  13. Kubota R, Yamada S, Kubota K, et al (1992) Intratumoral distribution of F-18 fluorodeoxyglucose in vivo: high accumulation in macrophages and granulation tissues studied by microautoradiography. J Nucl Med 33:1972–1980

    PubMed  CAS  Google Scholar 

  14. Kutcher GJ, Leibel SA, Mohan R, Harrison LB, Armstrong JG, Zelefsky MF, LoSasso TJ, Burmann CM, Mageras GS, Chui CS, Brewster LJ, Masterson ME, Ling CC, Fuks Z (1993) Advances in precision treatment: Some aspects of 3D conformal radiation therapy. Front Radiat Ther Oncol 27:209–226

    PubMed  CAS  Google Scholar 

  15. Kutcher GJ, Burman C, Brewster MS, Goitein M, Mohan R (1991) Histogram reduction method for calculating complication probabilities for three-dimensional treatment planning evaluations. Int J Radiat Oncol Biol Phys 21:137–146

    PubMed  CAS  Google Scholar 

  16. Munley MT, Marks LB, Scarefone C, Sibley GS, Part EF, Turkington TG, Jaszczak RJ, Gilland DR, Anscher MS, Coleman RE (1999) Multimodality nuclear medicine imaging in three-dimensional radiation treatment planning for lung cancer: Challenges and prospects. Lung Cancer 23:105 114

    Google Scholar 

  17. Nestle U, Walter K, Schmidt S, Licht N, Nieder C, Motaref B, Hellwig D, Niewald M, Ukena D, Kirsch CM, Sybrecht GW, Schnabel K (1999) 18F-Deoxyglucose positron emission tomography (FDG-PET) for the planning of radiotherapy in lung cancer: High impact in patients with atelectasis. Int J Radiat Oncol Biol Phys 44:593–597

    Article  PubMed  CAS  Google Scholar 

  18. Perez CA, Stanley K, Rubin P, Kramer S, Brady LW, Marks JE, Perez-Tamayo R, Brown GS, Concannon JP, Rotman M, and the Radiation Therapy Oncology Group (1980) Patterns of tumor recurrence after definitive irradiation for inoperable non-oat cell carcinoma of the lung. Int J Radiat Oncol Biol Phys 6:987–994

    Article  PubMed  CAS  Google Scholar 

  19. Przetak C, Baum RP, Slomka PJ (2001) Image fusion raises clinical value of PET. Diagnostic Imaging Europe 17:10–15

    Google Scholar 

  20. Rosenmann J, Chaney EL, Sailer S, Sherouse GW, Tepper JE (1991) Recent advances in radiotherapy treatment planning. Cancer Invest 9:465–481

    Article  Google Scholar 

  21. Schmuecking M, Plichta K, Lopatta E, Baum RP (1999) Wertigkeit der F-18 FDG-PET für das Therapie-Management und die Definition des PTV in der Strahlentherapie des Bronchialkarzinoms. Strahlenther Onkol 175:76 S

    Article  Google Scholar 

  22. Ukena D, Rentz K, Leutz M, et al (1998) Evaluation of lung cancer with FDG-positron emission tomography (PET). Eur Resp J 12:393

    Google Scholar 

  23. Vansteenkiste JF, Stroobants SG, De Leyn PR, Dupont PJ, Bogaert J, Maes A, Deneffe GJ, Nackaerts KL, Verschakelen JA, Lerut TE, Mortelmans LA, Demedts MG (1998) Lymph node staging in non-small-cell lung cancer with FDG-PET scan: A prospective study on 690 lymph node stations from 68 patients. J Clin Oncol 16:2142–2149

    PubMed  CAS  Google Scholar 

  24. Vanuytsel LJ, Vansteenkiste JF, Stroobants SG, De Leyn PR, De Wever W, Verbeken EK, Gatti GG, Huyskens DP, Kutcher GJ (2000) The impact of 18-F-fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) lymph node staging on the radiation treatment volumes in patients with non-small cell lung cancer. Radiother Oncol 55:317–324

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schmücking, M. et al. (2003). Molecular Whole-Body Cancer Staging Using Positron Emission Tomography: Consequences for Therapeutic Management and Metabolic Radiation Treatment Planning. In: Allgayer, H., Heiss, M.M., Schildberg, F.W. (eds) Molecular Staging of Cancer. Recent Results in Cancer Research, vol 162. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59349-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59349-9_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63945-6

  • Online ISBN: 978-3-642-59349-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics