Molecular Whole-Body Cancer Staging Using Positron Emission Tomography: Consequences for Therapeutic Management and Metabolic Radiation Treatment Planning

  • Michael Schmücking
  • Richard P. Baum
  • Frank Griesinger
  • Norbert Presselt
  • Reiner Bonnet
  • Christian Przetak
  • Andreas Niesen
  • Jochen Leonhardi
  • Eric C. Lopatta
  • Bernhard Herse
  • Thomas G. Wendt
Part of the Recent Results in Cancer Research book series (RECENTCANCER, volume 162)


A prospective analysis was performed in 124 non-small cell lung cancer patients to determine the role of F-18 fluorodeoxyglucose (FDG)-positron emission tomography (PET) for molecular (metabolic) staging (n=63), therapy monitoring after induction-chemotherapy (n=34), and conformai radiation treatment planning (n=27). Staging by FDG-PET was significantly more accurate than CT (p<0.00l) and changed therapeutic management in 52% of all patients. After induction-chemotherapy, patients with complete metabolic remission histologically did not show vital tumor cells in contrast to patients with metabolic partial remission or progressive disease. Metabolic radiation treatment planning by PET led to smaller planning target volumes (PTVs) for radiation therapy (between 3% and 21% in 25/27 patients), resulting in a reduction of dose exposure to healthy tissue. In two patients, PET-PTV was larger than CT-based PTV, since PET detected lymph node metastases smaller than 1 cm. FDG-PET provides clinically important information; changes therapeutic management, can predict noninvasively effectiveness of chemotherapy, and may lead to better tumor control with less radiation-induced toxicity.


Positron Emission Tomography Planning Target Volume Image Fusion Radiation Therapy Oncology Group Radiation Treatment Planning 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baum RP, Schmuecking M, Plichta K, Presselt N, Bonnet R, Lopatta E, Niesen A, Przetak C, Leonhardi J (2000) Staging of non small cell lung cancer (NSCLC) — is PET really clinically important or just a research tool? J Nucl Med 41:293PGoogle Scholar
  2. 2.
    Baum RP, Bonnet RB, Presselt N, Leonhardi J (2001) Positronenemissionstomographie (PET) mit F-18-FDG in der Diagnostik des Bronchialkarzinoms und zur Dignitätsabklärung von pulmonalen Raumforderungen. Nuklearmediziner 24:9–23Google Scholar
  3. 3.
    Baum RP, Rust M, Adams S, Strassmann G, Berekfeld J, Wagner R, Hertel A, Hör G (1996) Influence on patients’ management by whole-body F-18 FDG PET for preoperative staging of non small cell lung cancer. J Nucl Med 37:121PGoogle Scholar
  4. 4.
    Byhardt RW, Martin L, Pajak TF, Shin KH, Emami B, Cox JD (1993) The influence of field size and other treatment factors on pulmonary toxicity following hyperfractionated irradiation for inoperable non-small lung cancer (NSCLC) — analysis of a Radiation Therapy Oncology Group (RTOG) protocol. Int J Radiat Oncol Biol Phys 27:537–544CrossRefGoogle Scholar
  5. 5.
    Cai J, Chu JC, Recine D, Sharma M, Nguyen C, Rodebaugh R, Saxena VA, Ali A (1999) CT and PET lung imaging registration and fusion in radiotherapy treatment planning using the chamfer-matching method. Int J Radiat Oncol Biol Phys 43:883–891PubMedCrossRefGoogle Scholar
  6. 6.
    Debois M, Fossard A, Vansteenkiste J, De Wever W, Verschakelen J, Bogaerts J, Gatti G, Stroobants S, Dupont P, Huyskens D, Kutcher J, Vanuytsel J (1998) Impact of PET scan on the target volume in lung cancer radiotherapy planning. Radiother Oncol 48:13SGoogle Scholar
  7. 7.
    Emami B, Lyman J, Brown A, Coia L, Goitein M, Munzenrider JE, Shank B, Solin LJ, Wesson M (1991) Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys 21:109–122PubMedGoogle Scholar
  8. 8.
    Erdi YE, Macapinlac H, Rosenzweig KE, Humm JL, Larson SM, Erdi AE, Yorke ED (2000) Use of PET to monitor the response of lung cancer to radiation treatment. Eur J Nucl Med 27:861–866PubMedCrossRefGoogle Scholar
  9. 9.
    ICRU-Report 50, International Commission on Radiation Units and Measurements (1993) Prescribing, recording and reporting photon beam therapy. 1st edn. ICRU-Publications, Bethesda, Maryland USAGoogle Scholar
  10. 10.
    Graham MV, Purdy JA, Emami B, Harms W, Bosch W, Lockett MA, Perez CA (1999) Clinical dose-volume histogram analysis for pneumonitis after 3D treatment for non-small cell lung cancer (NSCLC). Int J Radiat Oncol Biol Phys 45:323–329PubMedGoogle Scholar
  11. 11.
    Graham MV, Jain NL, Kahn MG, Drzymala RE, Purdy JA (1996) Evaluation of an objective plan-evaluation model in the three-dimensional treatment of nonsmall cell lung cancer. Int J Radiat Oncol Biol Phys 34:469–474PubMedCrossRefGoogle Scholar
  12. 12.
    Kiffer JD, Berlangieri SU, Scott AM, Quong G, Feigen M, Schumer W, Clarke CP, Knight SR, Daniel FJ (1998) The contribution of 18F-fluoro-2-deoxy-glucose positron emission tomographic imaging to radiotherapy planning in lung cancer. Lung Cancer 19:167–177PubMedCrossRefGoogle Scholar
  13. 13.
    Kubota R, Yamada S, Kubota K, et al (1992) Intratumoral distribution of F-18 fluorodeoxyglucose in vivo: high accumulation in macrophages and granulation tissues studied by microautoradiography. J Nucl Med 33:1972–1980PubMedGoogle Scholar
  14. 14.
    Kutcher GJ, Leibel SA, Mohan R, Harrison LB, Armstrong JG, Zelefsky MF, LoSasso TJ, Burmann CM, Mageras GS, Chui CS, Brewster LJ, Masterson ME, Ling CC, Fuks Z (1993) Advances in precision treatment: Some aspects of 3D conformal radiation therapy. Front Radiat Ther Oncol 27:209–226PubMedGoogle Scholar
  15. 15.
    Kutcher GJ, Burman C, Brewster MS, Goitein M, Mohan R (1991) Histogram reduction method for calculating complication probabilities for three-dimensional treatment planning evaluations. Int J Radiat Oncol Biol Phys 21:137–146PubMedGoogle Scholar
  16. 16.
    Munley MT, Marks LB, Scarefone C, Sibley GS, Part EF, Turkington TG, Jaszczak RJ, Gilland DR, Anscher MS, Coleman RE (1999) Multimodality nuclear medicine imaging in three-dimensional radiation treatment planning for lung cancer: Challenges and prospects. Lung Cancer 23:105 114Google Scholar
  17. 17.
    Nestle U, Walter K, Schmidt S, Licht N, Nieder C, Motaref B, Hellwig D, Niewald M, Ukena D, Kirsch CM, Sybrecht GW, Schnabel K (1999) 18F-Deoxyglucose positron emission tomography (FDG-PET) for the planning of radiotherapy in lung cancer: High impact in patients with atelectasis. Int J Radiat Oncol Biol Phys 44:593–597PubMedCrossRefGoogle Scholar
  18. 18.
    Perez CA, Stanley K, Rubin P, Kramer S, Brady LW, Marks JE, Perez-Tamayo R, Brown GS, Concannon JP, Rotman M, and the Radiation Therapy Oncology Group (1980) Patterns of tumor recurrence after definitive irradiation for inoperable non-oat cell carcinoma of the lung. Int J Radiat Oncol Biol Phys 6:987–994PubMedCrossRefGoogle Scholar
  19. 19.
    Przetak C, Baum RP, Slomka PJ (2001) Image fusion raises clinical value of PET. Diagnostic Imaging Europe 17:10–15Google Scholar
  20. 20.
    Rosenmann J, Chaney EL, Sailer S, Sherouse GW, Tepper JE (1991) Recent advances in radiotherapy treatment planning. Cancer Invest 9:465–481CrossRefGoogle Scholar
  21. 21.
    Schmuecking M, Plichta K, Lopatta E, Baum RP (1999) Wertigkeit der F-18 FDG-PET für das Therapie-Management und die Definition des PTV in der Strahlentherapie des Bronchialkarzinoms. Strahlenther Onkol 175:76 SCrossRefGoogle Scholar
  22. 22.
    Ukena D, Rentz K, Leutz M, et al (1998) Evaluation of lung cancer with FDG-positron emission tomography (PET). Eur Resp J 12:393Google Scholar
  23. 23.
    Vansteenkiste JF, Stroobants SG, De Leyn PR, Dupont PJ, Bogaert J, Maes A, Deneffe GJ, Nackaerts KL, Verschakelen JA, Lerut TE, Mortelmans LA, Demedts MG (1998) Lymph node staging in non-small-cell lung cancer with FDG-PET scan: A prospective study on 690 lymph node stations from 68 patients. J Clin Oncol 16:2142–2149PubMedGoogle Scholar
  24. 24.
    Vanuytsel LJ, Vansteenkiste JF, Stroobants SG, De Leyn PR, De Wever W, Verbeken EK, Gatti GG, Huyskens DP, Kutcher GJ (2000) The impact of 18-F-fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) lymph node staging on the radiation treatment volumes in patients with non-small cell lung cancer. Radiother Oncol 55:317–324PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Michael Schmücking
  • Richard P. Baum
    • 1
  • Frank Griesinger
  • Norbert Presselt
  • Reiner Bonnet
  • Christian Przetak
  • Andreas Niesen
  • Jochen Leonhardi
  • Eric C. Lopatta
  • Bernhard Herse
  • Thomas G. Wendt
  1. 1.Klinik für NuklearmedizinZentralklinik Bad BerkaBad BerkaGermany

Personalised recommendations