Kinematics of the LCS Mobile Bearing Total Knee Arthroplasty

  • J. B. Stiehl
  • R. D. Komistek


The determination of three-dimensional femoral-tibial kinematics dramatically improved with the introduction of in vivo weight bearing fluoroscopic studies. It is now believed that these techniques are highly accurate and reproducible as compared to earlier non-fluoroscopic methods. From literature review, those older techniques included in vitro cadaver studies, in vivo non-weight bearing radiographic studies, gait analysis, goniometric studies, and photogrammetry (RSA). In vitro cadaver studies measured the passive effects of the primary and secondary ligament constraints but were unable to add the physiologic muscle forces or the dynamic loading of actual human weight bearing. The disadvantage of gait studies and goniometric fixtures was the significant error introduced by non-stationary soft tissues which has been shown to be substantial. Roentgenographic stereo-photogrammetry (RSA) can be stated as highly precise with accuracy of 0.03 mm but the method must be considered non-weight bearing as subjects are not able to walk, stair climb, deep knee bend, etc.


Total Knee Arthroplasty Normal Knee Lateral Condyle Anterior Translation Mobile Bearing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andriacchi TP, Tanrowski LE, Berger RA, Galante JO (1999) New insights into femoral rollback during stair climbing and posterior cruciate ligament function. Transactions 45th Annual Meeting, Orthopaedic Research Society, Anaheim, Ca, p 20Google Scholar
  2. 2.
    Argenson JN, Komistek RD, Stiehl JB et al. (2001) In vivo 3D determination of kinematics for subjects having a normal knee, unicompartmental or total knee arthroplasty. Proceedings 68th Annual Meeting of AAOS, San Francisco, CA, p 663Google Scholar
  3. 3.
    Banks SC, Riley PO, Spector C, Hodge WA (1991) In vivo bearing motion with meniscal bearing TKR. Proceedings of the 37th Annual Orthopaedic Research Society Meeting, Annheim, Ca,p 563Google Scholar
  4. 4.
    Blunn GW, Walker PS, Joshi A, Hardinge K (1991) The dominance of cyclic sliding in producing wear in total knee re-placements. Clin Orthop 273: 253–260PubMedGoogle Scholar
  5. 5.
    Dejour H, Bonnin M (1994) Tibial translation after anterior cruciate ligament rupture. J Bone Joint Surg 76B: 745–749Google Scholar
  6. 6.
    Dennis DA, Komistek RD, Colwell CE, Ranawat CS, Scott RD, Thornhill TS, Lapp MA (1998) In vivo anteroposterior fem- orotibial translation of total knee arthroplasty: a multicenter analysis. Clin Orthop 356: 47–57PubMedCrossRefGoogle Scholar
  7. 7.
    Dennis DA, Komistek RD, Hoff WA, Gabriel SM (1996) In vivo kinematics derived using an inverse perspective technique. Clin Orthop 331: 107–117PubMedCrossRefGoogle Scholar
  8. 8.
    Dennis DA, Komistek RD, Stiehl JB, Walker SA, Dennis KN (1998) Range of motion after total knee arthroplasty. J Arthroplasty 13: 748–752PubMedCrossRefGoogle Scholar
  9. 9.
    Dennis DA, Komistek RD, Walker SA, Cheal EJ, Stiehl JB (2001) Femoral condylar lift-off in vivo total knee arthroplasty. J Bone Joint Surg 83B: 33–39CrossRefGoogle Scholar
  10. 10.
    Draganich LF, Andriacchi TP, Andersson GBJ (1987) Interaction between intrinsic knee mechanics and the knee extensor mechanism. J Orthop Res 5: 539–547PubMedCrossRefGoogle Scholar
  11. 11.
    El Nahass B, Madson NM, Walker PS (1991) Motion of the knee after condylar resurfacing - an in vivo study. J Biomech 24: 1107–1117PubMedCrossRefGoogle Scholar
  12. 12.
    Freeman MAR, Railton GT (1988) Should the posterior cruciate ligament be retained or resected in condylar non- meniscal knee arthroplasty? J Arthroplasty 1 (Suppl): 3–12CrossRefGoogle Scholar
  13. 13.
    Gabriel SM, Dennis DA, Koomistek RD, Hoff WA, Stiehl JB (1996) In vivo TKA kinematics with consequences for system stresses and strains. Proceedings 42nd Annual Meeting Orthopaedic Research Society, Atlanta, Georgia, p 201Google Scholar
  14. 14.
    Garg A, Walker PS (1990) Prediction of total knee motion using a three-dimensional computer-graphics model. J Biomech 23: 45–58PubMedCrossRefGoogle Scholar
  15. 15.
    Haas B, Stiehl JB, Komistek RD (2002) Kinematic comparison of posterior cruciate sacrifice versus substitution in a mobile bearing total knee arthroplasty. (Accepted)Google Scholar
  16. 16.
    Jonsson II, Kärrholm J (1994) Three-dimensional knee joint movements during a step-up: Evaluation after anterior cruciate ligament rupture. J Orthop Res 12: 769–779PubMedCrossRefGoogle Scholar
  17. 17.
    Kärrholm J, Selvik G, Elmqvist LG, Hansson LI (1988) Active knee motion after cruciate ligament rupture. Acta Orthop Scand 59: 158–164PubMedGoogle Scholar
  18. 18.
    Kim H, Pelker RR, Gibson DH, Irving JF, Lynch JK (1997) Rollback in posterior cruciate ligament-retaining total knee arthroplasty. J Arthroplasty 12: 553–561PubMedCrossRefGoogle Scholar
  19. 19.
    Kurosaw H, Walker PS, Abe S,Garg A, Hunter T (1985) Geometry and motion of the knee for implant and orthotic design. J Biomech 18: 487–499CrossRefGoogle Scholar
  20. 20.
    Menchetti PP, Walker PS (1997) Mechanical evaluation of mobile bearing knees. Am J Knee Surg 10: 73–81PubMedGoogle Scholar
  21. 21.
    Nilsson KG, Kärrholm J, Ekelund L (1990) Knee motion in total knee arthroplasty. A roentgen stereophotogrammetric analysis of kinematics of the Tricon-M knee prosthesis. Clin Orthop 256: 147–161PubMedGoogle Scholar
  22. 22.
    Nilsson KG, Kärrholm J, Gadegaard P (1991) Abnormal kinematics of the artificial knee. Roentgen stereophotogrammetric analysis of 10 Miller-Galante and five New- Jersey LCS Knee. Acta Orthop Scand 62: 440–446PubMedCrossRefGoogle Scholar
  23. 23.
    Oakshott R.Stiehl JB, Komistek RD, Haas BR (2002) Kinematics of a posterior cruciate retaining mobile bearing total knee arthroplasty. I Arthroplasty (Accepted )Google Scholar
  24. 24.
    Pinskerova V, Iwaki H, Freeman MAR (1999) The movements of the knee: A cadaveric magnetic resonance imaging and dissection study. Transactions of the Annual Meeting, American Academy of Orthopaedic Surgeons, Anaheim, CA, p 82Google Scholar
  25. 25.
    Schlepckow P (1992) Three-dimensional kinematics of total knee replacement systems. Arch Orthop Trauma Surg 111: 204–209PubMedCrossRefGoogle Scholar
  26. 26.
    Soudry M, Walker PS, Reilly DT, Kurosawa H, Sledge CB (1986) Effects of total knee replacement design on femoral-tibial contact conditions. J Arthroplasty 1: 35–45PubMedCrossRefGoogle Scholar
  27. 27.
    Stiehl] B, Dennis DA, Komistek RD (1998) The cruciate lig-aments in total knee arthroplasty: a kinematic analysis. Orthop Trans 22: 150Google Scholar
  28. 28.
    Stiehl JB, Dennis DA, Komistek RD, Crane HS (1999) In vivo Determination of condylar lift-off and screw-home in a mobile-bearing total knee arthroplasty. J Arthroplasty 14: 293–299PubMedCrossRefGoogle Scholar
  29. 29.
    Stiehl JB, Dennis DA, Komistek RD, Keblish PA (1997) Kinematic analysis of a mobile bearing total knee arthroplasty. Clin Orthop 345: 60–65PubMedGoogle Scholar
  30. 30.
    Stiehl JB, Dennis DA, Komistek RD, Keblish PA (2001) In vivo kinematics of the patellofemoral joint in total knee arthroplasty. J Arthroplasty 16: 706–714PubMedCrossRefGoogle Scholar
  31. 31.
    Stiehl JB, Komistek RD, Dennis DA (1999) Detrimental kinematics of a Hat on Hat total condylar knee arthroplasty. Clini Orthop 364: 46–56Google Scholar
  32. 32.
    Stiehl JB, Komistek RD, Dennis DA (2000) In vivo kinematic comparison of posterior cruciate retention or sacrifice with a mobile bearing total knee arthroplasty. Am J Knee Surg 13: 13–18PubMedGoogle Scholar
  33. 33.
    Stiehl JB, Komistek RD, Dennis DA, Paxson RD (1995) Fluoroscopic analysis of kinematics after posterior cruciate- retaining knee arthroplasty. J Bone Joint Surg 77B: 884–889Google Scholar
  34. 34.
    Stiehl, JB, Komistek, RD, Haas BR, Dennis DA (2001) Frontal plane kinematics after mobile bearing total knee arthroplasty. Clin Orthop 392: 56–61PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • J. B. Stiehl
  • R. D. Komistek

There are no affiliations available

Personalised recommendations