Skip to main content

Part of the book series: Molekulare Medizin ((MOLMED))

  • 148 Accesses

Zusammenfassung

Zu primären Immundefizienzen (ID) kommt es, wenn eine oder mehrere Komponenten des Immunsystems defekt sind. In den hoch industrialisierten Ländern sind die meisten ID erblich bedingt. Patienten oder Patientinnen mit einer erblichen ID fallen klinisch durch rezidivierende Infekte im Kindesalter auf. Während rezidivierende Infektionen durch pyogene Bakterien auf einen Defekt der Antikörper-, der Komplement- oder der Phagozytenfunktion hinweisen, werden virale Infektionen hauptsächlich durch die Dysregulation T-Zell-vemittelter Immunantworten verursacht.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Aldrich MB, Blackburn MR, Kellems RE (2000) The importance of adenosine deaminase for lymphocyte development and function. Biochem Biophys Res Comm 272:311–315

    PubMed  CAS  Google Scholar 

  • Amiet A (1963) Aldrich Syndrom: Beobachtung zweier Fälle. Ann Paediatr 201:315–335

    PubMed  CAS  Google Scholar 

  • Andrade MA, Bork P (1995) HEAT repeats in the Huntington’s disease protein. Nat Genet 11:115–116

    PubMed  CAS  Google Scholar 

  • Apasov SG, Blackburn MR, Kellems RE, Smith PT, Sitkvsky MV (2001) Adenosine deaminase deficiency increases thymic apoptosis and causes defective T cell receptor signaling. J Clin Invest 108:131–141

    PubMed  CAS  Google Scholar 

  • Argyle JC, Kjeldsberg CR, Marty J, Shigeoka AO, Hill HR (1982) T-Cell lymphoma and the Chediak-Higashi syndrome. Blood 60:672–676

    PubMed  CAS  Google Scholar 

  • Arpaia E, Shahar M, Dadi H, Cohen A, Roifman CM (1994) Defective T-cell receptor signalling and CD8+ thymic selection in humans lacking zap-70 kinase. Cell 76:947–958

    PubMed  CAS  Google Scholar 

  • Arredondo-Vega FX, Santisteban I, Daniels S, Toutain S, Hershfield MS (1998) Adenosine deaminase deficiency: genotype-phenotype correlations based on expressed activity of 29 mutant alleles. Am J Hum Genet 63:1049–1059

    PubMed  CAS  Google Scholar 

  • Aust MR, Andrews LG, Barrett MJ, Norby-Slycord CJ, Markert ML (1992) Molecular analysis of mutations in a patient with purine nucleoside Phosphorylase deficiency. Am J Hum Genet 51:763–772

    PubMed  CAS  Google Scholar 

  • Baba Y, Nonoyama S, Matsushita M et al. (1999) Involvement of Wiskott-Aldrich syndrome protein in in B-cell cytoplasmic tyrosine kinase pathway. Blood 93:2003–2012

    PubMed  CAS  Google Scholar 

  • Bennett CL, Christie J, Ramsdell F et al. (2001) The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet 27:20–22

    PubMed  CAS  Google Scholar 

  • Bianchi A, Mariani S, Beggiato E et al. (1997) Distribution of T-cell signalling molecules in human myeloma. Br J Hematol 97:815–820

    CAS  Google Scholar 

  • Brandau O, Schuster V, Weiss M et al. (1999) Epstein-Barr virus negative boys with non-Hodgkin lymphoma are mutated in the SH2D1A gene, as are patients with X-linked lymphoproliferative disease. Hum Mol Genet 8:2407–2413

    PubMed  CAS  Google Scholar 

  • Brown MP, Topham DJ, Sangster MY et al. (1998) Thymic lymphoproliferative disease after successful correction of CD40 ligand deficiency by gene transfer in mice. Nat Med 4:1253–1260

    PubMed  CAS  Google Scholar 

  • Buckley RH (2000) Primary immunodeficiency diseases due to defects in lymphocytes. N Engl J Med 343:1313–1324

    PubMed  CAS  Google Scholar 

  • Candotti F, Villa A, Notarangelo LD (1999) Severe combined immunodeficiency due to defects of JAK3 tyrosine kinase. In: Ochs HD, Smith CIE, Puck JM (eds) Primary immunodeficiency diseases Oxford University Press, New York, pp 111–120

    Google Scholar 

  • Chan AC, Desai DM, Weiss A (1994) The role of protein tyrosine kinases and protein tyrosine phosphatases in T-cell antigen receptor signal transduction. Ann Rev Immunol 12:555–592

    CAS  Google Scholar 

  • Clodi K, Wimmer D, Li Y et al. (2000) Expression of TRAIL receptors and sensitivity to TRAIL-induced apoptosis in primary B-cell acute lymphoblastic leukemia cells. Br J Haematol 111:580–586

    PubMed  CAS  Google Scholar 

  • Coffey AJ, Brooksbank RA, Brandau O et al. (1998) Host response to EBV infection in X-linked lymphoproliferative disease results from mutations in an SH2-domain encoding gene. Nat Genet 20:129–135

    PubMed  CAS  Google Scholar 

  • Cunningham-Rundles C, Siegal FP, Cunnigham-Rundles S, Lieberman P (1987) Incidence of cancer in 98 patients with common varied immunodeficiency. J Clin Immunol 7:294–299

    PubMed  CAS  Google Scholar 

  • Derry JMJ, Ochs HD, Francke U (1994) Isolation of a novel gene mutated in Wiskott-Aldrich syndrome. Cell 78:635–644

    PubMed  CAS  Google Scholar 

  • De Saint-Basile G, Fischer A (2001) The role of cytotoxicity in lymphocyte homeostasis. Curr Opin Immunol 13:549–554

    PubMed  Google Scholar 

  • Dillo D, Brown M, Roskrow M et al. (1997) CD40 ligand induces an antileukemia response in vivo. Blood 90:1927–1933

    Google Scholar 

  • Drappa J, Vaishnaw AK, Sullivan KE, Chu JL, Elkon KB (1996) Fas gene mutations in the Canale-Smith syndrome, an inherited lymphoproliferative disorder associated with autoimmunity. N Engl J Med 336:1457–148

    Google Scholar 

  • Eck SC, Turka LA (1999) Generation of protective immunity against an immunogenic carcinoma requires CD40/CD40L and B7/CD28 interactions but not CD4(+) T cells. Cancer Immunol Immunother 48:336–341

    PubMed  CAS  Google Scholar 

  • Eischen CM, Williams BL, Zhang W et al. (1997) ZAP-70 tyrosine kinase is required for the up-regulation of Fas ligand in activation-induced T cell apoptosis. J Immunol 159:1135–1139

    PubMed  CAS  Google Scholar 

  • Fargnoli MC, Edelson RL, Berger CL et al. (1997) Diminished TCR signaling in cutaneous T cell lymphoma is associated with decreased activities of Zap70, Syk and membrane-associated Csk. Leukemia 11:1338–1346

    PubMed  CAS  Google Scholar 

  • Filipovich AH, Shapiro RS, Robinson L, Mertens A, Frizzera G (1990) Lymphoproliferative disorders associated with immunodeficiency. In: Magrath IT (ed) The Non-Hodgkin’s lymphomas. Edward Arnold, London, pp 135–154

    Google Scholar 

  • Fischer A, Hacein-Bey S, Le Deist F et al. (2000) Gene therapy of severe combined immunodeficiencies. Immunol Rev 178:13–20

    PubMed  CAS  Google Scholar 

  • Giblett ER, Anderson JE, Cohen F, Pollara B, Meuwissen HJ (1972) Adenosine deaminase deficiency in two patients with severely impaired cellular immunity. Lancet 2:1067–1069

    PubMed  CAS  Google Scholar 

  • Grierson H, Purtiilo DT (1987) Epstein-Barr virus infections in males with the X-linked lymphoproliferative syndrome. Ann Intern Med 106:538–545

    PubMed  CAS  Google Scholar 

  • Guinamard R, Aspenström P, Fougereau M, Chavrier P, Guillemot JC (1998) Tyrosine phosphorylation of the Wiskott-Aldrich syndrome protein by Lyn and Btk is regulated by CDC42. FEBS Lett 434:431–436

    PubMed  CAS  Google Scholar 

  • Hansson H, Mattsson PT, Allard P et al. (1998) Solution structure of the SH3 domain from Bruton’s tyrosine kinase. Biochemistry 37:2912–2924

    PubMed  CAS  Google Scholar 

  • Harrington DS, Weisenburger DD, Purtilo DT (1987) Malignant lymphoma in the X-linked lymphoproliferative syndrome. Cancer 59:1419–1429

    PubMed  CAS  Google Scholar 

  • Hatada MH, Lu X, Laird ER et al. (1995) Molecular basis for interaction of the protein tyrosine kinase ZAP-70 with the T-cell receptor. Nature 377:32–38

    PubMed  CAS  Google Scholar 

  • Hershfield MS, Kerdich NM, Ownby DR, Buckley R (1979) In vivo inactivation of erythrocyte S-adenosylhomocysteine hydrolase by 2′-desoxyadenosine in adenosine deaminase-deficient patients. J Clin Invest 63:807–811

    PubMed  CAS  Google Scholar 

  • Holinski-Feder E, Weiss M, Brandau O et al. (1998) Mutation screening of the BTK gene in 56 families with X-linked agammaglobulinemia (XLA): 47 unique mutations without correlation to clinical course. Pediatrics 101:276–284

    PubMed  CAS  Google Scholar 

  • Ichihara Y, Hirai M, Kurosawa Y (1992) Sequence and chromosome assignment to 11p13-p12 of human RAG genes. Immunol Lett 33:277–284

    PubMed  CAS  Google Scholar 

  • Ishii E, Yoshida N, Kimura N et al. (1999) Clonal dissemination of T-lymphocytes in seid mice from familial hemophagocytic lymphohistiocytosis. Med Pediatr Oncol 32:201–208

    PubMed  CAS  Google Scholar 

  • Itoh N, Yonehara S, Ishii A et al. (1991) The polypeptide encoded by the cDNA for human cell surface antigen Fas can mediate apoptosis. Cell 66:233–243

    PubMed  CAS  Google Scholar 

  • Jackson CE, Puck JM (1999) Autoimmune lymphoproliferative syndrome, a disorder of apoptosis. Curr Opin Pediatr 11:521–527

    PubMed  CAS  Google Scholar 

  • Janeway CA, Travers P, Walport M, Shlomchick M (2001) Immunobiology, Garland Publishing, NY, USA

    Google Scholar 

  • Karim MA, Nagle DL, Kandil HH, Bürger J, Moore KJ, Spritz KA (1997) Mutations in the Chediak-Higashi syndrome gene (CHS1) indicate requirement for the complete 3801 amino acid CHS protein. Hum Mol Genet 6:1087–1089

    PubMed  CAS  Google Scholar 

  • Karpusas M, Hsu YM, Wang JH et al. (1995) 2A crystal structure of an extracellular fragment of human CD40 ligand. Structure 3:1031–1039

    PubMed  CAS  Google Scholar 

  • Kinlen LJ, Webster ADB, Bird AG et al. (1985) Prospective study of cancer in patients with hypogammaglobulinemia. Lancet 1:263–266

    PubMed  CAS  Google Scholar 

  • Kitada S, Zapata JM, Andreeff M, Reed JC (1999) Bryostatin and CD40 ligand enhance apoptosis resistance and induce expression of survival genes in B-cell chronic lymphocytic leukemia. Br J Haematol 106:995–1004

    PubMed  CAS  Google Scholar 

  • Knecht H, Berger C, Rothenberger S, Odermatt BF, Brousset P (2001) The role of Epstein-Barr virus in neoplastic transformation. Oncology 60:289–302

    PubMed  CAS  Google Scholar 

  • Lavilla P, Gil A, Rodriguez MCG, Dupla ML, Pintado V, Fontan G (1993) X-linked agammaglobulinemia and gastric adenocarcinoma. Cancer 72:1528–1531

    PubMed  CAS  Google Scholar 

  • Lederman HM, Winkelstein JA (1985) X-linked agammaglobulinemia: an analysis of 96 patients. Medicine (Baltimore) 64:145–156

    CAS  Google Scholar 

  • Li T, Tsukada S, Satterthwaite A et al. (1995) Activation of Bruton’s tyrosine kinase (Btk) by a point mutation in its pleckstrin homology (PH) domain. Immunity 2:451–460

    PubMed  CAS  Google Scholar 

  • Löffler G (2003) Biochemie und Pathobiochemie. Springer, Heidelberg Berlin, p 642

    Google Scholar 

  • Macchi P, Villa A, Giliani S et al. (1995) Mutations of Jak-3 gene in patients with autosomal severe combined immune deficiency (SCID). Nature 377:65–68

    PubMed  CAS  Google Scholar 

  • Mache CJ, Slave I, Schmid C et al. (1994) Familial hemophagocytic lymphohistiocytosis associated with disseminated T-cell lymphoma: a report of two siblings. Ann Hematol 69:85–91

    PubMed  CAS  Google Scholar 

  • Markert ML (1991) Purine nucleoside Phosphorylase deficiency. Immunodef Rev 3:45–81

    PubMed  CAS  Google Scholar 

  • Martin DA, Zheng L, Siegel RM et al. (1999) Defective CD95/APO-1/Fas signal complex formation in the human autoimmune lymphoproliferative syndrome, type la. Proc Natl Acad Sci USA 96:4552–4557

    PubMed  CAS  Google Scholar 

  • Mayer L, Kwan SP, Thompson C et al. (1986) Evidence for a defect in „switch“T cells in patients with immunodeficiency and hypergammaglobulinemia. N Engl J Med 314:409–413

    PubMed  CAS  Google Scholar 

  • Menasche G, Pastural E, Feldman J et al. (2000) Mutations in RAB27A cause Griscelli syndrome associated with hemosphagocytic syndrome. Nat Genet 25:173–176

    PubMed  CAS  Google Scholar 

  • Meydan N, Grunberger T, Dadi H et al. (1996) Inhibition of acute lymphoblastic leukaemia by a Jak-2 inhibitor. Nature 379:645–648

    PubMed  CAS  Google Scholar 

  • Mikhalap SV, Shlapatska LM, Berdova AG, Law CL, Clark EA, Sidorenko SP (1999) Cdw150 associates with src-homology 2-containing inositol phosphatase and modulates CD95-mediated apoptosis. J Immunol 162:5719–5727

    PubMed  CAS  Google Scholar 

  • Morra M, Howie D, Grande MS et al. (2001) X-linked lymphoproliferative disease: a progressive immunodeficiency. Ann Rev Immunol 19:657–682

    CAS  Google Scholar 

  • Mroczek E, Weisenburger DD, Grierson HL, Markin R, Purtilo DT (1987) Fatal infectious mononucleosis and virusassociated hemophagocytic syndrome. Arch Pathol Lab Med 111:530

    PubMed  CAS  Google Scholar 

  • Nagle DL, Karim MA, Woolf EA et al. (1996) Identification and mutation analysis of the complete gene for Chediak-Higashi syndrome. Nat Genet 14:307–311

    PubMed  CAS  Google Scholar 

  • Nakanishi M, Kikuta H, Tomizawa K et al. (1993) Distinct clonotypic Epstein-Barr virus-induced fatal lymphoproliferative disorder in a patient with Wiskott-Aldrich syndrome. Cancer 72:1376–1381

    PubMed  CAS  Google Scholar 

  • Okano M, Gross TG (2000) A review of Epstein-Barr virus infection in patients with immunodeficiency disorders. Am J Med Sci 319:392–396

    PubMed  CAS  Google Scholar 

  • Parolini S, Bottino C, Falco M et al. (2000) X-linked lymphoproliferative disease: 2B4 molecules displaying inhibitory rather than activating function killer cells to kill Epstein-Barr virus infected cells. J Exp Med 192:337–346

    PubMed  CAS  Google Scholar 

  • Peifer M, Berg S, Reynolds AB (1994) A repeating amino acid motif shared by proteins with diverse cellular roles. Cell 76:789–791

    PubMed  CAS  Google Scholar 

  • Puck JM (1999) X-linked severe combined immunodeficiency. In: Ochs HD, Smith CIE, Puck JM (eds) Primary immunodeficiency diseases. Oxford University Press, New York, pp 99–110

    Google Scholar 

  • Puck JM, Deschenes SM, Porter JC et al. (1993) The interleukin-2 receptor gamma chain maps to Xq13.1 and is mutated in X-linked severe combined immunodeficiency, SCIDX1. Hum Mol Genet 2:1099–1104

    PubMed  CAS  Google Scholar 

  • Puel A, Leonard WJ (2000) Mutations in the gene for the IL-7 receptor result in T-B+NK+ severe combined immunodeficiency disease. Curr Opin Immunol 12:468–473

    PubMed  CAS  Google Scholar 

  • Puel A, Ziegler SF, Buckley RH, Leonard WJ (1998) Defective ILR7 expression in T-B+NK+ severe combined immunodeficiency. Nat Genet 20:394–397

    PubMed  CAS  Google Scholar 

  • Ramesh N, Geha RS, Notarangelo LD (1999) CD40-ligand and the Hyper-IgM syndrome. In: Ochs HD, Smith CIE, Puck JM (eds) Primary immunodeficiency diseases. Oxford University Press, New York, pp 233–249

    Google Scholar 

  • Ratter F, Germer M, Fischbach T et al. (1996) S-Adenosylhomocysteine as a physiological modulator of Apo-1-mediated apoptosis. Int Immunol 8:1139–1147

    PubMed  CAS  Google Scholar 

  • Remold-O’Donnell E, Cooley J, Shcherbina A et al. (1997) Variable expression of WASP in B cell lines of Wiskott-Aldrich syndrome patients. J Immunol 158:4021–4025

    PubMed  Google Scholar 

  • Royer-Pokora B, Kunkel LM, Monaco AP et al. (1986) Cloning the gene for an inherited human disorder — chronic granulomatous disease — on the basis of its chromosomal location. Nature 322:32–38

    PubMed  CAS  Google Scholar 

  • Rozenfeld-Granot G, Toren A, Amariglio N, Brok-Simoni F, Rechavi G (2001) Mutation analysis of the FAS and TNFR apoptotic cascade genes in hematological malignancies. Exp Hematol 29:228–233

    PubMed  CAS  Google Scholar 

  • Russell SM, Tayebi N, Nakajima H et al. (1995) Mutation of Jak3 in a patient with SCID: essential role of Jak3 in lymphoid development. Science 270:707–800

    Google Scholar 

  • Salim K, Bottomley MJ, Querfurth E et al. (1996) Distinct specificity in the recognition of phosphoinositides by the pleckstrin homology domains of dynamin and Bruton’s tyro-sine kinase. EMBO J 15:6241–6250

    PubMed  CAS  Google Scholar 

  • Sayos J, Wu C, Morra M et al. (1998) The X-linked lymphoproliferative-disease gene product SAP regulates signals induced through the co-receptor SLAM. Nature 395:462–469

    PubMed  CAS  Google Scholar 

  • Schindelhauer D, Hellebrand H, Grimm L et al. (1996) Long range map of a 3.5-Mb region in Xp11.23–22 with a sequence ready map from a 1.1 Mb gene-rich interval. Gen Res 6:1056–1069

    CAS  Google Scholar 

  • Schultze JL, Gribben JG, Nadler LM (1998) Tumor-specific adoptive T-cell therapy for CD40+ B-cell malignancies. Curr Opin Oncol 10:542–547

    PubMed  CAS  Google Scholar 

  • Schwarz K, Hansen-Hagge TE, Knobloch C, Friedrich W, Kleihauer E, Bartram CR (1991) Severe combined immunodefiency (SCID) in man: B-cell negative (B-) SCID patients exhibit an irregular recombination pattern at the JH locus. J Exp Med 174:1039–1048

    PubMed  CAS  Google Scholar 

  • Schwarz K, Gauss GH, Ludwig L et al. (1996) RAG mutations in human B cell-negative SCID. Science 274:97–99

    PubMed  CAS  Google Scholar 

  • Seemayer TA, Gross TG, Egeler RM et al. (1995) X-linked lymphoproliferative disease: twenty-five years after the dicovery. Pediatr Res 38:471–477

    PubMed  CAS  Google Scholar 

  • Sivori S, Parlini S, Falco M et al. (2000) 2B4 functions as a co-receptor in human NK cell activation. Eur J Immunol 30:787–793

    PubMed  CAS  Google Scholar 

  • Snapper SB, Rosen FS (1999) The Wiskott-Aldrich syndrome protein (WASP): roles in signaling and cytoskeletal organization. Ann Rev Immunol 17:905–929

    CAS  Google Scholar 

  • Stepp S, Dufourcq-Lagelouse R, Le Deist F et al. (1999) Perforin gene defects in familial hemophagocytic lymphohistiocytosis. Science 286:1957–1959

    PubMed  CAS  Google Scholar 

  • Strauss SE, Jaffe ES, Puck JM et al. (2001) The development of lymphomas in families with autoimmune lymphoproliferative syndrome with germline Fas mutations and defective lymphocyte apoptosis. Blood 98:194–200

    Google Scholar 

  • Su I-J, Wang C-H, Cheng A-L, Chen R-L (1995) Hemophagocytic syndrome in Epstein-Barr virus-associated T-lymphoproliferative disorders. Leuk Lymphoma 19:401–406

    PubMed  CAS  Google Scholar 

  • Sullivan KE, Mullen CA, Blaese RM, Winkelstein JA (1994) A multiinstitutional survey of the Wiskott-Aldrich syndrome. J Paediatr 125:876–885

    CAS  Google Scholar 

  • Takemoto S, Mulloy JC, Cereseto A et al. (1997) Proliferation of adult T cell leukemia/lymphoma cells is associated with the constitutive activation of JAK/STAT proteins. Proc Natl Acad Sci USA 94:13897–13902

    PubMed  CAS  Google Scholar 

  • Takeshita T, Asao H, Ohtani K et al. (1992) Cloning of the gamma chain of the human IL-2 receptor. Science 257:379–382

    PubMed  CAS  Google Scholar 

  • Taniguchi T (1995) Cytokine signaling through nonreceptor protein tyrosine kinases. Science 268:251–255

    PubMed  CAS  Google Scholar 

  • Tsukada S, Saffran DC, Rawlings DJ et al. (1993) Deficient expression of a B cell tyrosine kinase in human X-linked agammaglobulinemia. Cell 72:279–290

    PubMed  CAS  Google Scholar 

  • Van der Meer JWM, Weening RS, Schellekens PTA, Van Muster IP, Nagengast FM (1993) Colorectal cancer in patients with X-linked agammaglobulinemia. Lancet 341:1439–1440

    PubMed  Google Scholar 

  • Vetrie D, Vorechovsky I, Sideras P et al. (1993) The gene involved in agammaglobulinemia is a member of the Src family of protein-tyrosine kinases. Nature 361:226–233

    PubMed  CAS  Google Scholar 

  • Vorechovsky I, Zetterquist H, Paganelli R et al. (1995) Family and linkage study of selective IgA deficiency and common variable immunodeficiency. Clin Immunol Immunopathol 77:214–218

    Google Scholar 

  • Wang J, Zheng L, Lobito A et al. (1999) Inherited human Caspase 10 mutations underlie defective lymphocyte and dendritic cell apoptosis in autoimmune lymphoproliferative syndrome type II. Cell 98:47–58

    PubMed  CAS  Google Scholar 

  • Wiginton DA, Kaplan DJ, States JC et al. (1986) Complete sequence and structure of the gene for human adenosine desaminase. Biochemistry 25:3211–3217

    Google Scholar 

  • Wildin RS, Ramsdell F, Peake J et al. (2001) X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy. Nat Genet 27:18–20

    PubMed  CAS  Google Scholar 

  • Williams SR, Gekeler V, Mclvor RS, Martin DW (1987) A human nucleoside Phosphorylase deficiency caused by a single base change. J Biol Chem 262:2332–2338

    PubMed  CAS  Google Scholar 

  • Xagoraris I, Paterakis G, Zolota B, Zikos P, Maniatis A, Mouzaki A (2001) Expression of granzyme B and perforin in multiple myeloma. Acta Haematol 105:125–129

    PubMed  CAS  Google Scholar 

  • Younes A, Carbone A (1999) CD30/CD30 ligand and CD40/CD40 ligand in malignant lymphoid disorders. Intern J Biol Markers 14:135–143

    CAS  Google Scholar 

  • Zhu Q, Watanabe C, Liu T et al. (1997) Wiskott-Aldrich syndrome/X-linked thrombocytopenia: WASP mutations, protein expression, and phenotype. Blood 90:2680–2689

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Meindl, A. (2003). Hereditäre Immundefizienzen und hämatologische Neoplasien. In: Ganten, D., Ruckpaul, K., Schlegelberger, B., Fonatsch, C. (eds) Molekularmedizinische Grundlagen von hämatologischen Neoplasien. Molekulare Medizin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59343-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59343-7_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63941-8

  • Online ISBN: 978-3-642-59343-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics