New Bench-mark Results for the 2D Lid-driven Cavity Problem

  • Charles-Henri Bruneau
  • Mazen Saad
Conference paper

Abstract

The 2D lid-driven cavity problem is revisited for a wild range of Reynolds numbers. Accurate bench-mark results are provided for steady solutions as well as for periodic solutions around the critical Reynolds number and turbulent solutions at high Reynolds number. Data are given for Re = 103, Re = 5 x 103, Re = 104 and Re = 105. In addition, the first Hopf bifurcation is localised by a study of the linearized problem and the computation of the first Lyapunov exponent.

Keywords

Vortex Convection Vorticity Boulder 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O. Botella, R. Peyret, Comput. Fluids 27 n° 4, 1998.Google Scholar
  2. 2.
    Ch.-H. Bruneau, C. Jouron, J. Comput. Phys. 89 n° 2, 1990.Google Scholar
  3. 3.
    Ch.-H. Bruneau, M. Saad, The 2D lid-driven cavity problem revisited, submitted.Google Scholar
  4. 4.
    F. Dexun, M. Yanwen, L. Hong, Proc. 5th Int. Symp. CFD, Sendai 1993.Google Scholar
  5. 5.
    A. Fortin, M. Jardak, J.J. Gervais, R. Pierre, Int. J. Numer. Methods Fluids 24 n° 11, 1997.Google Scholar
  6. 6.
    U. Ghia, K.N. Ghia, C.T. Shin, J. Comput. Phys. 48, 1982.Google Scholar
  7. 7.
    U. Goodrich, Proc. IMACS 1st Int. Conf. Comp. Physics, Boulder 1990.Google Scholar
  8. 8.
    A. Huser, S. Biringen, Int. J. Numer. Methods Fluids 14 n° 9, 1992.Google Scholar
  9. 9.
    T. Kawamura, H. Takami, K. Kuwahara, Lect. Notes Phys. 218, 1985.Google Scholar
  10. 10.
    J. Kim, P. Moin, J. Comput. Phys. 59, 1985.Google Scholar
  11. 11.
  12. 12.
    B.P. Leonard, Comput. Methods Appl. Mech. Eng. 88 n° 1, 1991. Google Scholar
  13. 13.
    R. Schreiber, H.B. Keller, J. Comput. Phys. 49, 1983.Google Scholar
  14. 14.
    S.P. Vanka, J. Comput. Phys. 65, 1986.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Charles-Henri Bruneau
    • 1
  • Mazen Saad
    • 1
  1. 1.Mathématiques Appliquées de BordeauxUniversité Bordeaux 1TalenceFrance

Personalised recommendations