Advertisement

Temporal Mass Detection

  • Marius George Linguraru
  • Konstantinos Marias
  • Michael Brady

Abstract

We present a method to prompt a clinician to “suspicious” dense regions in temporal mammogram sequences. The particular context that we envisage is mammogram screening, when the clinician compares the most recent mammogram to previous ones in order to detect significant changes. The method uses anisotropic filtering as a pre-processing step in order to significantly reduce the number of candidate masses, while preserving the important anatomical information about each mass. The method has already been tested on 15 temporal pairs, where pathology has been diagnosed in the most recent image.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Linguraru, M.G. Brady, J.M. Yam, M.: Filtering hint Images for the Detection of Microcalcifications. In Niessen, W. Viergever, M. (eds.): Medical Image Computing and Computer-Assited Intervention 2001, Lecture Notes in Computer Science, Vol. 2208. Springer-Verlag, Berlin Heidelberg New York (2001) 629–636Google Scholar
  2. 2.
    Marias, K. Behrenbruch, C.P. Brady, M. Parbhoo, S. Seifalian, A.: Multi-Scale Landmark Selection for Improved Registration of Temporal Mammograms. In Yaffe, M.J. (ed.): International Workshop on Digital Mammography 2000, Medical Physics Publishing, Madison (2000) 580–586Google Scholar
  3. 3.
    Weickert, J.: Anisotropic Diffusion in Image Processing. B.G. Teubner, Stuttgart (1998)Google Scholar
  4. 4.
    Wolfe, J.N.: Breast Patterns as an Index of Risk for Developing Breast Cancer. American Journal of Roentgenology, 126 (1976) 1130–1139PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Marius George Linguraru
    • 1
  • Konstantinos Marias
    • 1
  • Michael Brady
    • 1
  1. 1.Medical Vision LaboratoryUniversity of OxfordSummertown, OxfordUK

Personalised recommendations