Comparison of BI-RADS Lesion Descriptors and Computer-Extracted Image Features for Automated Classification of Malignant and Benign Breast Lesions

  • Yulei Jiang
  • Robert M. Nishikawa
  • Robert A. Schmidt
  • Carl J. D’Orsi
  • Carl J. Vyborny
  • Maryellen L. Giger
  • Li Lan
  • Zhimin Huo
  • Alexander V. Edwards
Conference paper

Abstract

We compared Breast Imaging Report and Data System (BI-RADS) lesion descriptors provided by radiologists and image features extracted by a computer for computer classification of breast lesions as malignant or benign. Our results indicate that combining the BI-RADS lesion descriptors provided by radiologists and the computer-extracted image features produced the best computer classification performance.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jiang, Y., Nishikawa, R.M., Schmidt, R.A., Metz, C.E., Giger, M.L. and Doi, K.: Improving Breast Cancer Diagnosis with Computer-Aided Diagnosis. Acad. Radiol. 6 (1999) 22–33PubMedCrossRefGoogle Scholar
  2. 2.
    Huo, Z., Giger, M.L>, Vyborny, C.J. and Metz, C.E.: Effectiveness of CAD in the Diagnosis of Breast Cancer: An observer Study on an Independent Databse of Mammograms. Radiology (in press)Google Scholar
  3. 3.
    Baker, JA., Kornguth, P.J, Lo, J.Y. and Floyd, C.E.J.: Artificial Neural Network: Improving the Quality of Breast Biopsy Recommendations. Radiology 198 (1996) 131–135PubMedGoogle Scholar
  4. 4.
    American College of Radiology (ACR): Breast Imaging Reporting and Data System (BI- RADStm). 3rd ed. American College of Radiology, Reston, VA, (1998)Google Scholar
  5. 5.
    Huo, Z, Giger, M.L, Vyborny, C.J, Wolverton, D.E., Schmidt, R.A. and Doi, K.: Automated Computerized Classification of Malignant and Benign Masses on Digitized Mammograms. Acad. Radiol. 5 (1998) 155–168PubMedCrossRefGoogle Scholar
  6. 6.
    Jiang, Y, Nishikawa, R.M, Wolverton, D.E., Metz, C.E, Giger, M.L, Schmidt, R.A, Vyborny, C.J. and Doi, K.: Malignant and Benign Clustered Microcalcifications: Automated Feature Analysis and Classification. Radiology 198 (1996) 671–678PubMedGoogle Scholar
  7. 7.
    Kupinski, M.A., Edwards, D.C., Giger, M.L. and Metz, C.E.: Ideal Observer Approximation Using Bayesian Classification Neural Networks. IEEE Trans. Med. Imaging 20 (2001) 886–899PubMedCrossRefGoogle Scholar
  8. 8.
    Baker, J.A., Kornguth, P.J. and Floyd, C.E., Jr.: Breast Imaging Reporting and Data System Standardized Mammography Lexicon: Observer Variability in Lesion Description. AJR Am. J. Roentgenol. 166 (1996) 773–778PubMedGoogle Scholar
  9. 9.
    Berg, W.A., Campassi, C., Langenberg, P. and Sexton, M.J.: Breast Imaging Reporting and Data System: Inter- and Intraobserver Variability in Feature Analysis and Final Assessment. AJR Am. J. Roentgenol. 174 (2000) 1769–1777PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Yulei Jiang
    • 1
  • Robert M. Nishikawa
    • 1
  • Robert A. Schmidt
    • 1
  • Carl J. D’Orsi
    • 2
  • Carl J. Vyborny
    • 1
  • Maryellen L. Giger
    • 1
  • Li Lan
    • 1
  • Zhimin Huo
    • 1
  • Alexander V. Edwards
    • 1
  1. 1.Department of RadiologyThe University of ChicagoChicagoUSA
  2. 2.Department of RadiologyEmery UniversityAtlantaUSA

Personalised recommendations