Regeneration by Induction Heating of Granular Activated Carbon Loaded with Volatile Organic Compounds

  • Pierre Mocho
  • Pierre Le Cloirec
Part of the Environmental Engineering book series (ESE)


Induction heating is used to regenerate granular activated carbon (GAC) for the purpose of recycling volatile organic compounds (especially solvents). As the technological possibilities offered by induction on an industrial scale have to be taken into account, the carbon has to be selected according to its origin and its granulometry.

Coconut charcoal (Picactif NC 60) with a median diameter of 3.8 mm was selected to maximize energizing yield. The incorporation of susceptors into the carbon (10% weight) significantly improved heating efficiency. For a current with frequency equal to 263 kHz, heating efficiency primarily depended on the granulometry of activated carbon and of suceptors. This current frequency also permitted a homogeneous heating of the GAG.

In addition, the adsorption capacity of activated carbon for removing ethyl acetate from waste water was evaluated. Once the parameters of the granular environment were maximized for both induction and adsorption in batch, cyclic adsorption-desorption experiments were conducted to evaluate regeneration adsorption capacity. An adsorption capacity value of 0.12 g/g was reached after the third adsorption-desorption cycle which represented a global loss in adsorption capacity of 32% compared to initial adsorption.

Experimental data indicate that industrial development of the induction heating process for GAC regeneration may be feasible.


Activate Carbon Adsorption Capacity Granular Medium Induction Heating Granular Activate Carbon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abram HC (1969) Chem Ind 1557Google Scholar
  2. Brunauer S, Emmet PH, Teller E (1938) J Amer Chem Soc 60, 309CrossRefGoogle Scholar
  3. Chartier P (1993) Programme de recherche et de dévelopement technologique 1992–1996, Rapport ADEME, 27–29Google Scholar
  4. Cocheo V, Bombi S (1987) Am Ind Hyg Assoc J 48 (3) 189–197CrossRefGoogle Scholar
  5. Guibal E, Saucedo I, Roussy J, Le Cloirec P (1993) Water SA 19 2,119Google Scholar
  6. Jedrzejak A (1983) Modelling of activated carbon desorption by a circulated inert gaz. Chem Eng Tech 11,352–358CrossRefGoogle Scholar
  7. Kraus JD (1984) Electromagnetics. Chap 4,122, Ed: Mc Graw-Hill, SingapourGoogle Scholar
  8. Le Cloirec P, Fanlo JL, Degorce-Dumas JR (1991) Etudes des odeurs et désodorisation industrielle, 114–124, Ed: Innovation 128, ParisGoogle Scholar
  9. Le Cloirec P, Baudu M, Martin G (1990) Dispositif d’adsorption à couches superposées espacées et régéneration ar effect Joule, Brevet Francais n° 9003923Google Scholar
  10. Le Cloirec P, Mocho P (1993) Procédé de régéneration d’un adsorbant granulaire, dispositif de mise en oeuvre et composite, Brevet Francais n° 9310755Google Scholar
  11. McKay G, Balk HS, Findon A (1986) Immobilization of ions by bio-sorption. Ed: Eccles H, Hunt S, Ellis Horwood Limited, ChichesterGoogle Scholar
  12. McKay G, Otterburn MS, Sweeney AG (1980), Wat Res 14, 150–20Google Scholar
  13. McKay G, Poots VJP (1980) J Chem Tech Biotechnol 30, 279–292Google Scholar
  14. Mioduszewski D (1982) Inductive heating of spent granular activated carbon. QED Corporation, Ann Arbor, Mi, USAGoogle Scholar
  15. Novelect (1992), Les guides de l’innovation: Les applications innovantes de l’induction dans l’industrie. Ed: EDFGoogle Scholar
  16. Mocho P, Le Cloirec P, Reboux J (1993) Récents Progrés en Génie des Procédés. 7, 333–338Google Scholar
  17. Morris JC, Weber WJ (jr) (1962) Advances in water pollution research, Proceedings 1st In Conf on Water Pollution Res, Pergamon Press, New York, 2, 231–266Google Scholar
  18. Orfeuil M (1981) Electrothermie industrielle, Ed: Dunod, ParisGoogle Scholar
  19. Reboux J (1992) Induction heating: industrial applications. Ed: UIE, ParisGoogle Scholar
  20. Sado G, Sado MC (1991) Plans factoriels complets à deux niveaux, Les plans d’expériences, Chap. 3, 23–41, Ed: Afnor, ParisGoogle Scholar
  21. Schlosser WJ, Munnings RH (1972) Cryogenics 7, 302–303CrossRefGoogle Scholar
  22. Shork JM, Fair JR (1988) Ind Eng Chem Res 27, 1545–1547CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Pierre Mocho
  • Pierre Le Cloirec

There are no affiliations available

Personalised recommendations