Advertisement

Oorange: A Virtual Laboratory for Experimental Mathematics

  • Charles Gunn
  • Armin Ortmann
  • Ulrich Pinkall
  • Konrad Polthier
  • Uwe Schwarz

Summary

Oorange is a virtual laboratory for experimental mathematics. It consists of a set of infrastructure services supporting the creation, execution, and dissemination of mathematical experiments. For each component of a traditional physical experiment, there is a corresponding Oorange infrastructure feature:
  • Object of study: High level software classes

  • Laboratory equipment: Foundation software classes and function libraries

  • Configuration of specific experiment: Computational network composed of objects

  • Monitor and control: Object inspection; 2D and 3D viewers

  • Running the experiment: Animation objects

  • Recording the experiment: Archiving and scripting

  • Disseminating result: Documentation

A hybrid language scheme underlies the design: interpreted scripts in Tcl manage tasks requiring high flexibility, while a compiled object library in Objective C supports the underlying mathematical algorithms. The resulting system is intended to be accessible to wide range of expertise levels. Oorange is free software distributed according to a GNU-like license agreement.

Keywords

Time Manager Network Manager Class Hierarchy Infrastructure Service Experimental Mathematic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Addison-Wesley Publishing Co., Reading, Massachusetts, NeXTSTEP Object Oriented Programming and the Objective C Language, 1993, ISBN 0–201–63251–9.Google Scholar
  2. 2.
    B. J. Cox and A. J. Novobilski, Object Oriented Programming: An Evolutionary Approach,Addison-Wesley Publishing Company, Reading, Massachusetts, 1991. ISBN 0–201–54834–8.Google Scholar
  3. 3.
    M.-A. Halse, IRIS Explorer User’s Guide, Silicon Graphics Inc., Mountain View, California, 1993.Google Scholar
  4. 4.
    R. A. McCallum, Libtclobjc, 1994.Google Scholar
  5. 5.
    M. J. McLennan, [iner Tcl]: Object-oriented programming in tcl, Technical report, University of California, Berkeley, 1993.Google Scholar
  6. 6.
    A. Ortmann, Modellierung von Abhängigkeitsgraphen, Studienarbeit, Technical University Berlin, Feb 1996.Google Scholar
  7. 7.
    J. K. Ousterhout, Tcl and the Tk Toolkit, Professional Computing Series. Addison Wesley, 1994.MATHGoogle Scholar
  8. 8.
    M. Phillips, The Geomview User’s Manual, The Geometry Center, 1993.Google Scholar
  9. 9.
    K. Polthier and M. Rumpf, A Concept for Time-Dependent Processes,in: M. Göbel, H. Müller, and B. Urban (eds.), Visualization in Scientific Computing, Springer Verlag (1995), 137–153.Google Scholar
  10. 10.
    W. Schroeder, K. Martin, and B. Lorensen, The Visualization Toolkit, An Object-Oriented Approach To 3D Graphics, Prentice Hall, 1996.Google Scholar
  11. 11.
    Sonderforschungsbereich 256, Grape Manual, University of Bonn, Sept. 1995, http://www-sfb256.iam.uni-bonn.de/grape/main.html.
  12. 12.
    Sonderforschungsbereich 288,Oorange Online Manual, TU Berlin, http://www-sfb288.math.tu-berlin.de/oorange/OorangeDoc.html.
  13. 13.
    C. Upson, T. Faulhaber, D. Kamins, D. Laidlaw, D. Schlegel, J. Vroom, R. Gurwitz, and A. Van Dam, The application visualisation system: A computational environment for scientific visualisation. IEEE Computer Graphics and Applications, 9 (1989), 30–42.CrossRefGoogle Scholar
  14. 14.
    B. Welch, Practical Programming in Tcl and Tk, Prentice Hall, 1995.Google Scholar
  15. 15.
    J. Wernecke, The Inventor Mentor, Addison Wesley, 1994.Google Scholar
  16. 16.
    S. Wolfram, Mathematica, Addison Wesley, 1991.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Charles Gunn
    • 1
  • Armin Ortmann
    • 1
  • Ulrich Pinkall
    • 1
  • Konrad Polthier
    • 1
  • Uwe Schwarz
    • 1
  1. 1.Sfb 288, Fachbereich MathematikTechnische Universität BerlinGermany

Personalised recommendations