Skip to main content

The Minimax Sphere Eversion

  • Chapter
Visualization and Mathematics

Summary

We consider an eversion of a sphere driven by a gradient flow for elastic bending energy. We start with a halfway model which is an unstable Willmore sphere with 4-fold orientation-reversing rotational symmetry. The regular homotopy is automatically generated by flowing down the gradient of the energy from the halfway model to a round sphere, using the Surface Evolver. This flow is not yet fully understood; however, our numerical simulations give evidence that the resulting eversion is isotopic to one of Morin’s classical sphere eversions. These simulations were presented as real-time interactive animations in the CAVETM automatic virtual environment at Supercomputing’95, as part of an experiment in distributed, parallel computing and broad-band, asynchronous networking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. F. Apéry, An algebraic halfway model for the eversion of the sphere,Tohoku Math. J. 44 (1992), 103–150, with an appendix by B. Morin.

    Article  MathSciNet  MATH  Google Scholar 

  2. F. Apéry, Le retournement du cuboctaèdre, preprint, Institute de Recherche Mathématique Avancée, U. Louis Pasteur, Strasbourg, 1994.

    Google Scholar 

  3. T. Banchoff and N. L. Max, Every sphere eversion has a quadruple point, Contributions to Analysis and Geometry (Baltimore, MD, 1980) (D. N. Clark, G. Pecelli, and R. Sacksteder, eds.), Johns Hopkins Univ. Press, Baltimore, 1981, pp. 191–209.

    Google Scholar 

  4. R. Bargar, I. Choi, S. Das, and C. Goudeseune, Model-based interactive sound for an immersive virtual environment, Proceedings of the International Computer Music Conference (Aarhus, Denmark), International Computer Music Association, 1994, pp. 471–474.

    Google Scholar 

  5. K. A. Brakke The surface evolver, Experimental Mathematics 1 :2 (1992), 141–165.

    Article  MathSciNet  MATH  Google Scholar 

  6. K. A. Brakke and J. M. Sullivan, Using symmetry features of the surface evolver to study foams, Mathematics and Visualization (K. Polthier and H.-C. Hege, eds.), Springer Verlag, Berlin, 1996, pp. 95–117.

    Google Scholar 

  7. R. Bryant, A duality theorem for Willmore surfaces, J. Differential Geometry 20 (1984), 23–53.

    MATH  Google Scholar 

  8. C. Cruz-Neira, D. J. Sandin, T. A. Defanti, R. V. Kenyon, and J. C. Hart, The CAVE: Audio-visual experience automatic virtual environment,Communications ACM 35:6 (1992), 65–72.

    Article  Google Scholar 

  9. G. Francis, A topological picturebook, Springer-Verlag, New York, 1987.

    MATH  Google Scholar 

  10. G. Francis, The hypergraphics honors seminar at Illinois, Scientific Visualization in Mathematics and Science Teaching (D. Thomas, ed.), Assoc. Adv. Comp. in Educ., Charlottesville, VA, 1995.

    Google Scholar 

  11. G. Francis, F. Apéry, C. Hartman, and G. Chappell, Equivariant sphere eversions, narrated videotape (9 min) produced at the NCSA, U. Illinois, 1992.

    Google Scholar 

  12. G. Francis and B. Morin, Arnold Shapiro’s eversion of the sphere, Math. Intelligencer 2 (1979), 200–203.

    Article  MathSciNet  Google Scholar 

  13. G. Francis, J. M. Sullivan, K. Brakke, R. Kusner, D. Roseman, A. Bourd, C. Hartman, G. Chappell, and J. Rubenstein, LATERNA matheMAGICA, Virtual Environments and Distributed Computing at SC’95: GII Testbed and HPC Challenge Applications on the I-WAY (H. Korab and M. D. Brown, eds.), ACM/IEEE Supercomputing’95, 1995.

    Google Scholar 

  14. A. Hanson, T. Munzner, and G. Francis Interactive methods for visualizable geometry,IEEE Computer 27:4 (1994), 73–83.

    Article  Google Scholar 

  15. A. E. Hatcher, A proof of the Smale conjecture Diff (S 3) ≃ O(4), Annals of Math. 117 (1983), 553–607.

    Article  MathSciNet  MATH  Google Scholar 

  16. J. Hoffman and R. Kusner, Elastic surfaces and conformal geometry, video, produced at GANG, U. Massachusetts, Amherst, MA, 1992.

    Google Scholar 

  17. L. Hsu, R. Kusner, and J. M. Sullivan, Minimizing the squared mean curvature integral for surfaces in space forms, Experimental Mathematics 1:3 (1992), 191–207.

    Article  MathSciNet  MATH  Google Scholar 

  18. J. F. Hughes, Another proof that every eversion of the sphere has a quadruple point, Amer. J. Math. 107:2 (1985), 501–505.

    Article  MathSciNet  MATH  Google Scholar 

  19. J. F. Hughes, Polynomial models of smooth surfaces, presentation at the conference on Computer Graphics in Pure Mathematics (Dennis Roseman, organizer), U. Iowa and Inst. for Mathematics and its Applications, 1990.

    Google Scholar 

  20. R. Kusner, Conformal geometry and complete minimal surfaces, Bull. Amer. Math. Soc. 17 (1987), 291–295.

    Article  MathSciNet  MATH  Google Scholar 

  21. R. Kusner and N. Schmitt, The spinor representation of minimal surfaces, GANG preprint, 1994.

    Google Scholar 

  22. S. Levy, Making waves: A guide to the ideas behind Outside In, A K Peters, Wellesley, MA, 1995.

    MATH  Google Scholar 

  23. S. Levy, D. Maxwell, and T. Munzner, Outside In, A K Peters, Wellesley, MA, 1994, narrated videotape (21 min) produced by the Geometry Center, University of Minnesota.

    Google Scholar 

  24. P. Li and S. T. Yau, A new conformal invariant and its applications to the Willmore conjecture and the first eigenvalue of compact surfaces, Invent. Math. 69 (1982), 269–291.

    Article  MathSciNet  MATH  Google Scholar 

  25. N. L. Max, Turning a sphere inside out, International Film Bureau, Chicago, 1977, narrated videotape (21 min).

    Google Scholar 

  26. N. L. Max, Computer animation in mathematics, science,and art, Computers in Mathematics (D. V. Chudnovsky and R. D. Jenks, eds.), Lecture Notes in Pure and Applied Mathematics, vol. 125, Marcel Dekker, Inc., New York, 1990, includes as an appendix the illustrated guide to [25], pp. 321–345.

    Google Scholar 

  27. B. Morin, Équations du retournement de la sphére, Comptes Rendus Acad. Sci. Paris 287 (1978), 879–882.

    MathSciNet  MATH  Google Scholar 

  28. B. Morin and J.-P. Petit, Le retournement de la sphère, Les Progrès des Mathématiques, Pour la Science/Belin, Paris, 1980, pp. 32–45.

    Google Scholar 

  29. A. Phillips, Turning a sphere inside out,Sci. Amer. 214 (1966), 112–120.

    Google Scholar 

  30. S. Smale, A classification of immersions of the two-sphere,Trans. Amer. Math. Soc. 90 (1959), 281–290.

    Article  MathSciNet  MATH  Google Scholar 

  31. T. J. Willmore, Note on embedded surfaces, An. Stunt. Univ “Al. I. Cuza” Iasi Sect. I, a Mat. 11 (1965), 493–496.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Francis, G., Sullivan, J.M., Kusner, R.B., Brakke, K.A., Hartman, C., Chappell, G. (1997). The Minimax Sphere Eversion. In: Hege, HC., Polthier, K. (eds) Visualization and Mathematics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59195-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59195-2_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63891-6

  • Online ISBN: 978-3-642-59195-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics