Skip to main content

Computation of Constrained Spanning Trees: A Unified Approach

  • Conference paper
Network Optimization

Part of the book series: Lecture Notes in Economics and Mathematical Systems ((LNE,volume 450))

Abstract

Computing spanning trees with specific properties and constraints lies at the heart of many real-life network optimization problems. Here, a compilation of 29 constrained spanning tree problems is presented. Since most of these problems are NP-complete, good approximate heuristics are needed to solve them on parallel machines. We develop two generic methods for handling large graphs on massively-parallel SIMD machines.

The first method is for problems in which the goal is to find a spanning tree which satisfies a specified constraint while minimizing its total weight., First, a minimum spanning tree (MST) of the given weighted graph is computed without considering the specified constraint. Then, the constraint is used to increase the weights of selected edges (in this tree) in order that when the next MST is constructed (in the graph with modified edge weights) it has fewer violations of the constraint. Next, an MST of the graph with altered weights is computed. This iterative procedure of increasing the edge weights followed by the MST computation is repeated until a spanning tree without constraint violations is obtained. The second method, on the other hand, constructs a spanning tree once and for all — employing problem-specific heuristics in every step of the tree-construction.

As case studies, we consider two sample problems (Degree-Constrained MST and Minimun-Length Fundamental-Cycle-Set) — one for each of the two methods. Our extensive empirical study on well-known benchmark problems as well as on randomly-generated graphs shows that the quality of solutions for both the problems is promising and the execution-times, reasonable for graphs with thousands of nodes and several million edges.

Finally, to demonstrate the generality of our approach, we outline how to apply these two methods to three additional problems from the list, namely — Capacitated MST, Maximum-Leaf Spanning Tree,and Optimum-Communication Spanning Tree. For the Optimum-Communication Spanning Tree, a hybrid of the two methods is employed.

Research partially supported by NSF grant CDA-9115281

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrawal A., Klein P., Ravi R.: When trees collide: An approximation algorithm for the generalized Steiner tree problem on networks. In Proc. 23rd Annual ACM Symp. on Theory of Comput. (1991) 134–144

    Google Scholar 

  2. Agrawal A., Klein P., Ravi R.: How tough is the minimum degree Steiner tree? An approximate min-max equality (complete with algorithms). Tech Report TR-CS-91-49 (1991). Brown University, RI

    Google Scholar 

  3. Ahuja R.K., Magnanti T.L., Orlin J.B.: Network Flows: Theory, Algorithms and Applications. Chap 13 (1993). Prentice Hall, Englewood Cliffs, NJ

    Google Scholar 

  4. Alpert C.J., Cong J., Kahng A.B., Robins G., Sarrafzadeh M.: On the minimum density interconnection tree problem. VLSI Design. 2 (1994) 157–169

    Article  Google Scholar 

  5. Assad A., Xu W.: The quadratic minimum spanning tree problem. Naval Research Logistics. 39 (1992) 399–417

    Article  Google Scholar 

  6. Berman O., Einav D., Handler G.: The constrained bottleneck problems in networks. Oper. Res. 38 (1990) 178–181

    Article  Google Scholar 

  7. Bertsimas D.J.: Probabilistic Combinatorial Optimization Problems. Ph.D. Dissertation (1988). Oper. Res. Center, MIT, Cambridge (Tech Report # 194)

    Google Scholar 

  8. Bertsimas D.J.: The probabilistic minimum spanning tree problem. Networks. 20 (1990) 245–275

    Article  Google Scholar 

  9. Boese K.D., Kahng A.B.: Zero-skew clock routing trees with minimum wire-length. In Proc. Intn’l ASIC Conf. (1992) 17–21. Rochester, NY

    Google Scholar 

  10. Boese K.D., Kahng A.B., McCoy B. A., Robins G.: Near-optimal critical sink routing tree construction. IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems. (1994) 1417–1436

    Google Scholar 

  11. Boldon B., Deo N., Kumar N.: Minimum-weight degree-constrained spanning tree problem: Heuristics and implementation on an SIMD parallel machine. Tech Report CS-TR-95-02 (1995). Dept. of Comp. Science, Univ. of Central Florida, Orlando (Par. Comput. 22 (1996) 369-382)

    Google Scholar 

  12. Borah M., Owens R.M., Irwin M.J.: An edge-based heuristic for Steiner routing. IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems. 13 (1995) 1563–1568

    Article  Google Scholar 

  13. Camerini P.M., Galbiati G., Maffioli F.: Complexity of spanning tree problems: Part I. Eur. J. Oper. Res. 5 (1980) 346–352

    Article  Google Scholar 

  14. Camerini P.M., Galbiati G., Maffioli F.: On the complexity of finding multi-constrained spanning trees. Disc. Appl. Math. 5 (1983) 39–50

    Article  Google Scholar 

  15. Camerini P.M., Galbiati G., Maffioli F.: The complexity of weighted constrained spanning trees. In Proc. Colloq. on Theory of Alg. (1984) 53–101. Pécs, Hungary. János Bolyai Mathematical Society, Budapest

    Google Scholar 

  16. Camerini P.M., Galbiati G., Maffioli F.: Algorithms for finding optimum trees: Description, use, and evaluation. Annals of Oper. Res. 13 (1988) 265–397

    Article  Google Scholar 

  17. Chandrasekharan R.: Minimal ratio spanning tree. Networks. 7 (1977) 335–342

    Article  Google Scholar 

  18. Chao T.H., Hsu Y.C, Ho J.M., Boese K.D., Kahng A.B.: Zero-skew clock routing trees with minimum wirelength. IEEE Trans. Circuits and Systems. 39 (1992) 799–814

    Article  Google Scholar 

  19. Cong J., Kahng A.B., Robins G., Sarrafzadeh M., Wong C.K.: Provably good performance-driven global routing. IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems. 11 (1992) 739–752

    Article  Google Scholar 

  20. Cormen T.H., Leiserson C.E., Rivest R.L.: Introduction to Algorithms. Chap 37 (1993). MIT Press

    Google Scholar 

  21. Czech Z., Konopka M., Majewski B. Majewski.: Parallel algorithms for finding a suboptimal fundamental cycle set in a graph. Par. Comput. 19 (1993) 961–971

    Article  Google Scholar 

  22. Czech Z., Majewski B.: Generating a minimal perfect hash function in O(M 2) time. Archiwum Informatyki Teoretycznej I Stosowanej. 4 (1992) 3–20

    Google Scholar 

  23. Das S.K., Yang C.Q.: Performance of parallel spanning tree algorithms on linear array of transputers and Unix systems. Par. Comput. 17 (1991) 527–551

    Article  Google Scholar 

  24. Deo N.: A central tree. IEEE Trans. Circuit Theory. CT-13 (1966) 439–440

    Article  Google Scholar 

  25. Deo N., Hakimi S.L.: The shortest generalized Hamiltonain tree. In Proc. 6th Annual Allerton Conf. (1968) 879–888

    Google Scholar 

  26. Deo N., Kumar N., Parsons J.: Minimum-length fundamental-cycle set problem: A new heuristic and an SIMD implementation. Tech Report CS-TR-95-04 (1995). Dept. of Comp. Science, Univ. of Central Florida, Orlando

    Google Scholar 

  27. Deo N., Kumar N., Parsons J.: Minimum-length fundamental-cycle set problem: New heuristics and an empirical investigation. Congressus Numerantium. 107 (1995) 141–154

    Google Scholar 

  28. Deo N., Prabhu G., Krishnamoorthy M.: Algorithms for generating fundamental cycles in a graph. ACM Trans. Math. Soft. 8 (1982) 26–42

    Article  Google Scholar 

  29. Deo N., Yoo Y.B.: Parallel algorithms for the minimum spanning tree problem. In Proc. Intn’l Conf. on Par. Proc. (1980) 243–253

    Google Scholar 

  30. Egyhazy C.J.: An algorithm for generating the minimum length fundamental cycles in a graph. Congressus Numerantium. 50 (1985) 219–230

    Google Scholar 

  31. Fürer M., Raghavachari B.: An NC approximation algorithm for the minimum degree spanning tree problem. In Proc. 28th Annual Allerton Conf. (1990) 274–281

    Google Scholar 

  32. Fürer M., Raghavachari B.: Approximating the minimum degree spanning tree to within one from the optimal. In Proc. 3rd Annual ACM-SIAM Symp. on Disc. Alg. (1992) 317–324

    Google Scholar 

  33. Gabow H.N.: A good algorithm for smallest spanning trees with a degree constraint. Networks. 8 (1978) 201–208

    Article  Google Scholar 

  34. Gabow H.N., Galil Z., Spencer T.H.: Efficient implementation of graph algorithms using contraction. In Proc. 25th Annual Symp. on Foundations of Comp. Science. (1984) 347–357

    Google Scholar 

  35. Galbiati G., Maffioli F., Morzenti A.: A short note on the approximability of the maximum leaves spanning tree problem. Info. Proc. Lett. 52 (1994) 45–49

    Article  Google Scholar 

  36. Garey M.R., Graham R.L., Johnson D.S.: The complexity of computing Steiner minimal trees. SIAM J. Appl. Math. 34 (1977) 477–495

    Article  Google Scholar 

  37. Garey M.R., Johnson D.S.: Computers and Intractability: A Guide to the Theory of NP-completeness. (1979). W. H. Freeman, San Francisco

    Google Scholar 

  38. Gavish B.: Topological design of centralized computer networks — Formulation and algorithms. Networks. 12 (1982) 355–377

    Article  Google Scholar 

  39. Gavish B.: Formulation and algorithms for the capacitated minimal directed tree problem. J. ACM. 30 (1983) 118–132

    Article  Google Scholar 

  40. Geetha S., Nair K.P.K.: On stochastic spanning tree problem. Networks. 23 (1993) 675–679

    Article  Google Scholar 

  41. Glover F.: Tabu Search–Part I. ORSA J. Comput. 1 (1989) 190–206

    Article  Google Scholar 

  42. Glover F., Klingman D., Krishnan R.: An in-depth empirical investigation of non-greedy approaches for the minimum spanning tree problem. Eur. J. Oper. Res. 56 (1992) 343–353

    Article  Google Scholar 

  43. Gouveia L.: A 2n constraint formulation for the capacitated minimal spanning tree problem. Oper. Res. 43 (1995) 130–141

    Article  Google Scholar 

  44. Ho J.M., Lee D.T., Chang C.H., Wong C.K.: Minimum diameter spanning trees and related problems. SIAM J. Comput. 20 (1991) 987–997

    Article  Google Scholar 

  45. Horton J.: A polynomial-time algorithm to find the shortest cycle basis of a graph. SIAM J. Comput. 16 (1987) 358–366

    Article  Google Scholar 

  46. Hsu T.S., Ramachandran V., Dean N.: Implementation of parallel graph algorithms on MasPar. In DIMACS Series in Disc. Math. and Theoretical Comp. Science. 15 (1994) 165–198

    Google Scholar 

  47. Hu T.C: Optimum communication spanning trees. SIAM J. Comput. 3 (1974) 188–195

    Article  Google Scholar 

  48. Hubicka E., Syslo M.M.: Minimum bases of cycles of a graph. In Proc. 2nd Czechoslovak Symp. on Graph Theory. (1975) 283–293. Academia

    Google Scholar 

  49. Ishii H., Shiode S.: Chance-constrained bottleneck spanning tree problem. Annals of Oper. Res. 56 (1995) 177–188

    Article  Google Scholar 

  50. Ishii H., Shiode S., Nishida T., Namasuya Y.: Stochastic spanning tree problem. Disc. Appl. Math. 3 (1981) 263–273

    Article  Google Scholar 

  51. Johnson D.S.: The NP-completeness Column: An ongoing guide. J. Alg. 6 (1985) 145–159

    Article  Google Scholar 

  52. Johnson D.S., Kashdan S.D.: Lower bounds for selection on X + Y and other multisets. Tech Report # 183 (1976). Dept. of Comp. Science, Penn. State Univ., PA

    Google Scholar 

  53. Johnson D.S., Lenstra J.K., Rinnoy Kan A.H.G.: The complexity of the network design problem. Networks. 8 (1978) 279–285

    Article  Google Scholar 

  54. Kahng A.B., Robins G.: On Optimal Interconnections for VLSI. (1995). Kluwer Academic, Norwell, MA

    Google Scholar 

  55. Karp R.M.: Reducibility among combinatorial problems. In R.E. Miller and J.W. Thatcher (eds.). Complexity of Computer Computations. (1972) 85–103. Plenum Press, NY

    Chapter  Google Scholar 

  56. Kershenbaum A.:. Centralized Teleprocessing Network Design. Ph.D. Dissertation. (1976). Dept. of Comp. Science, Polytechnic Institute of New York, NY

    Google Scholar 

  57. Khoury B.N., Pardalos P.M.: An exact branch and bound algorithm for the Steiner problem in graphs. Lect. Notes on Comp. Science. 959 (1995) 582–590. Springer Verlag

    Article  Google Scholar 

  58. Khoury B.N., Pardalos P.M., Du D.Z.: A test problem generator for the Steiner problem in graphs. ACM Trans. Math. Soft. 19 (1993) 509–522

    Article  Google Scholar 

  59. Khuller S., Raghavachari B., Young N.: Balancing minimum spanning and shortest path trees. In Proc. ACM/SIAM Symp. on Disc. Alg. (1993) 243–250

    Google Scholar 

  60. Khuller S., Raghavachari B., Young N.: Low degree spanning tree of small weights. In Proc. 26th Annual ACM Symp. on Theory of Comput. (1994) 412–421

    Google Scholar 

  61. Lu H.I., Ravi R.: The power of local optimization: Approximation algorithms for Maximum-Leaf Spanning Tree. In Proc. 30th Allerton Conf. (1992) 533–542

    Google Scholar 

  62. Malik K., Yu G.: A branch and bound algorithm for the capacitated minimum spanning tree problem. Networks. 23 (1993) 525–532

    Article  Google Scholar 

  63. Mohd I.B.: Interval elimination method for stochastic spanning tree problem. Appl. Math, and Computation. 66 (1994) 325

    Article  Google Scholar 

  64. Moret B.M.E., Shapiro H.D.: An empirical analysis of algorithms for constructing minimum spanning tree. Lect. Notes on Comp. Science. 519 (1991) 400–411

    Article  Google Scholar 

  65. Moret B.M.E., Shapiro H.D.: How to construct a minimum spanning tree in practice. Lect. Notes on Comp. Science. 555 (1991) 192–203

    Article  Google Scholar 

  66. Moret B.M.E., Shapiro H.D.: An empirical assessment of algorithms for constructing a minimum spanning tree. In DIMACS Series in Disc. Math, and Theo retical Comp. Science. 15 (1994) 99–117

    Google Scholar 

  67. Papadimitriou C.H.: The complexity of the capacitated tree problem. Networks. 8 (1978) 217–230

    Article  Google Scholar 

  68. Papadimitriou C.H., Yannakakis M.: The complexity of restricted spanning tree problem. J. ACM. 29 (1982) 285–309

    Article  Google Scholar 

  69. Peng S.L.: Algorithms for the Capacitated Minimum Spanning Tree Problem (Spiral Search, Matching, Lagrangean Relaxation). Ph.D. Dissertation (1987). Dept. of Comp. Science, Polytechnic Institute of New York, NY

    Google Scholar 

  70. Ravi R.: Steiner Trees and Beyond: Approximation Algorithms for Network Design. Ph.D. Dissertation (1994). Dept. of Comp. Science, Brown Univ., RI

    Google Scholar 

  71. Reinelt G.: TSPLIB — A Traveling Salesman Problem Library. ORSA J. Comput. 2 (1991) 376–389

    Article  Google Scholar 

  72. Wee Y.C, Chaiken S., Ravi S.S.: Rectilinear Steiner tree heuristics and minimum spanning tree algorithms using geographic nearest neighbors. Algorithmica. 2 (1994) 421

    Article  Google Scholar 

  73. Xu G., Dougherty D., Lillys T.: Computing the minimum cost pipe network by interior-point branch-and-bound method. Presented in Conf. on Network Optimization. February 12–14 (1996). Gainesville, FL

    Google Scholar 

  74. Xu W.: Quadratic Minimum Spanning Tree Problems and Related Topics. Ph.D.Dissertation (1984). Dept. of Math., Univ. of Maryland, College Park, MD

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Deo, N., Kumar, N. (1997). Computation of Constrained Spanning Trees: A Unified Approach. In: Pardalos, P.M., Hearn, D.W., Hager, W.W. (eds) Network Optimization. Lecture Notes in Economics and Mathematical Systems, vol 450. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59179-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59179-2_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-62541-4

  • Online ISBN: 978-3-642-59179-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics