Skip to main content

Visual Models of Plant Development

  • Chapter
Handbook of Formal Languages

Summary

In these notes we survey applications of L-systems to the modeling of plants, with an emphasis on the results obtained since the comprehensive presentation of this area in The Algorithmic Beauty of Plants [99]. The new developments include:

  • extensions to the L-system formalism that increase its expressive power as needed for practical biological applications

  • introduction of programming constructs that enhance the use of L-systems as a language for describing developmental algorithms and as input for simulation programs, and

  • new biological applications of L-systems.

There is nothing so practical as a good theory.

Immanuel Kant (1724–1804)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Abelson and A. A. diSessa. Turtle geometry. M.I.T. Press, Cambridge, 1982.

    Google Scholar 

  2. J. Arvo and D. Kirk. Modeling plants with environment-sensitive automata. In Proceedings of Ausgraph’88, pages 27–33, 1988.

    Google Scholar 

  3. R. Baker and G. T. Herman. Simulation of organisms using a developmental model, parts I and II. Int. J. of Bio-Medical Computing,3:201–215 and 25–1267, 1972.

    Google Scholar 

  4. P. W. Barlow. Meristems, metamers and modules and the development of shoot and root systems. Botanical Journal of the Linnean Society, 100:255–279, 1989.

    Google Scholar 

  5. A. Bell. Plant form: An illustrated guide to flowering plants. Oxford University Press, Oxford, 1991.

    Google Scholar 

  6. A. D. Bell. The simulation of branching patterns in modular organisms. Philos. Trans. Royal Society London, Ser. B, 313:143–169, 1986.

    Google Scholar 

  7. A. D. Bell, D. Roberts, and A. Smith. Branching patterns: the simulation of plant architecture. Journal of Theoretical Biology, 81:351–375, 1979.

    Google Scholar 

  8. R. Borchert and H. Honda. Control of development in the bifurcating branch system of Tabebuia rosea: A computer simulation. Botanical Gazette, 145(2):184–195, 1984.

    Google Scholar 

  9. R. Borchert and N. Slade. Bifurcation ratios and the adaptive geometry of trees. Botanical Gazette, 142(3):394–401, 1981.

    Google Scholar 

  10. I. A. Borovikov. L-systems with inheritance: an object-oriented extension of L-systems. ACM SIGPLAN Notices, 30(5):43–60, 1995.

    Google Scholar 

  11. T. W. Chien and H. Jürgensen. Parameterized L systems for modelling: Potential and limitations. In G. Rozenberg and A. Salomaa, editors, Lindenmayer systems: Impacts on theoretical computer science,computer graphics, and developmental biology, pages 213–229. Springer-Verlag, Berlin, 1992.

    Google Scholar 

  12. V. Clausnitzer and J. W. Hopmans. Simultaneous modeling of transient three-dimensional root growth and soil water flow. Plant and Soil, 164:299–314, 1994.

    Google Scholar 

  13. P. Coats. Great gardens of the Western world. G. P. Putnam’s Sons, New York, 1963.

    Google Scholar 

  14. G. A. Constable. Mapping the production and survival of fruit on field grown cotton. Agronomy Journal, 83(2):374–378, 1991.

    Google Scholar 

  15. J. D. Corbit and D. J. Garbary. Computer simulation of the morphology and development of several species of seaweed using Lindenmayer systems. Computers and Graphics, 17(1):85–88, 1993.

    Google Scholar 

  16. M. J. M. de Boer. Analysis and computer generation of division patterns in cell layers using developmental algorithms. PhD thesis, University of Utrecht, 1989.

    Google Scholar 

  17. M. J. M. de Boer, F. D. Fracchia, and P. Prusinkiewicz. A model for cellular development in morphogenetic fields. In G. Rozenberg and A. Salomaa, editors, Lindenmayer systems: Impacts on theoretical computer science, computer graphics, and developmental biology, pages 351–370. Springer-Verlag, Berlin, 1992.

    Google Scholar 

  18. P. de Reffye, C. Edelin, J. Françon, M. Jaeger, and C. Puech. Plant models faithful to botanical structure and development. Proceedings of SIG-GRAPH ‘88 (Atlanta, Georgia, August 1–5, 1988), in Computer Graphics 22, 4 (August 1988), pages 151–158, ACM SIGGRAPH, New York, 1988.

    Google Scholar 

  19. F. M. Dekking. Recurrent sets. Advances in Mathematics, 44(1):78–104, 1982.

    MathSciNet  MATH  Google Scholar 

  20. F. M. Dekking. Recurrent sets: A fractal formalism. Report 82–32, Delft University of Technology, 1982.

    Google Scholar 

  21. P. Eichhorst and W. J. Savitch. Growth functions of stochastic Lindenmayer systems. Information and Control,45:217–228, 1980.

    MathSciNet  MATH  Google Scholar 

  22. J. B. Fisher. How predictive are computer simulations of tree architecture. International Journal of Plant Sciences, 153 (Suppl.):137–146, 1992.

    Google Scholar 

  23. J. D. Foley, A. van Dam, S. Feiner, and J. Hughes. Computer graphics: Principles and practice. Addison-Wesley, Reading, 1990.

    Google Scholar 

  24. C. Fournier. Introduction des réponses écophysiologiques à la temérature dans un modèle de plante à la base de L-Systèmes. Master’s thesis, Institut National Agronomique Paris-Grignon, 1995.

    Google Scholar 

  25. M. Fournier, H. Bailleres, and B. Chanson. Tree biomechanics: growth, cumulative prestress, and reorientations. Biomimetics, 2(3):229–251, 1994.

    Google Scholar 

  26. F. D. Fracchia, P. Prusinkiewicz, and M. J. M. de Boer. Animation of the development of multicellular structures. In N. Magnenat-Thalmann and D. Thalmann, editors, Computer Animation ‘80, pages 3–18, Springer-Verlag, Tokyo, 1990.

    Google Scholar 

  27. D. Frijters. An automata-theoretical model of the vegetative and flowering development of Hieracium murorum L. Biological Cybernetics,24:1–13, 1976.

    MATH  Google Scholar 

  28. D. Frijters. Mechanisms of developmental integration of Aster novae-angliae L. and Hieracium murorum L. Annals of Botany, 42:561–575, 1978.

    Google Scholar 

  29. D. Frijters. Principles of simulation of inflorescence development. Annals of Botany, 42:549–560, 1978.

    Google Scholar 

  30. D. Frijters and A. Lindenmayer. A model for the growth and flowering of Aster novae-angliae on the basis of table (1,0)L-systems. In G. Rozenberg and A. Salomaa, editors, L Systems, Lecture Notes in Computer Science 15, pages 24–52. Springer-Verlag, Berlin, 1974.

    Google Scholar 

  31. D. Frijters and A. Lindenmayer. Developmental descriptions of branching patterns with paracladial relationships. In A. Lindenmayer and G. Rozenberg, editors, Automata, languages, development, pages 57–73. North-Holland, Amsterdam, 1976.

    Google Scholar 

  32. D. J. Garbary and J. D. Corbit. Lindenmayer-systems as models of red algal morphology and development. Progress in Phycological Research, 8:143–177, 1992.

    Google Scholar 

  33. N. Greene. Organic architecture. SIGGRAPH Video Review 38, segment 16, ACM SIGGRAPH, New York, 1988.

    Google Scholar 

  34. N. Greene. Voxel space automata: Modeling with stochastic growth processes in voxel space. Proceedings of SIGGRAPH ‘89 (Boston, Mass., July 31-August 4, 1989), in Computer Graphics 23, 4 (August 1989), pages 175–184, ACM SIGGRAPH, New York, 1989.

    Google Scholar 

  35. J. Gruska and H. Jürgensen. Informatics: a fundamental science and methodology for the sciences (emerging from Computer Science and maturing). Manuscript, Department of Informatics, Slovak Academy of Sciences, Bratislava, and Department of Computer Science, University of Western Ontario, London, Ontario, 1990.

    Google Scholar 

  36. J. Gruska and H. Jürgensen. Maturing of informatics. In D. Bjørner and V. Kotov, editors, Images of Programming, pages I-55 - I-69. North-Holland, Amsterdam, 1991.

    Google Scholar 

  37. M. R. Guzy. A morphological-mechanistic plant model formalized in an object-oriented parametric L-system. Manuscript, USDA-ARS Salinity Laboratory, Riverside, 1995.

    Google Scholar 

  38. F. Hallé. Modular growth in seed plants. Philos. Trans. Royal Society London, Ser. B, 313:77–87, 1986.

    Google Scholar 

  39. F. Hallé, R. A. A. Oldeman, and P. B. Tomlinson. Tropical trees and forests: An architectural analysis. Springer-Verlag, Berlin, 1978.

    Google Scholar 

  40. J. Hanan. Virtual plants - Integrating architectural and physiological plant models. In P. Binning, H. Bridgman, and B. Williams, editors, Proceedings of ModSim 95, volume 1, pages 44–50, Perth, 1995. The Modelling and Simulation Society of Australia

    Google Scholar 

  41. J. S. Hanan. PLANTWORKS: A software system for realistic plant modelling. Master’s thesis, University of Regina, 1988.

    Google Scholar 

  42. J. S. Hanan. Parametric L-systems and their application to the modelling and visualization of plants. PhD thesis, University of Regina, June 1992.

    Google Scholar 

  43. J. L. Harper and A. D. Bell. The population dynamics of growth forms in organisms with modular construction. In R. M. Anderson, B. D. Turner, and L. R. Taylor, editors, Population dynamics, pages 29–52. Blackwell, Oxford, 1979.

    Google Scholar 

  44. J. W. Hart. Plant tropisms and other growth movements. Unwin Hyman, London, 1990.

    Google Scholar 

  45. G. T. Herman and W. H. Liu. The daughter of CELIA, the French flag, and the firing squad. Simulation, 21:33–41, 1973.

    Google Scholar 

  46. G. T. Herman and G. Rozenberg. Developmental systems and languages. North-Holland, Amsterdam, 1975.

    MATH  Google Scholar 

  47. P. Hogeweg. Simulating the growth of cellular forms. Simulation, pages 90–96, September 1978.

    Google Scholar 

  48. P. Hogeweg. Locally synchronized developmental systems: Conceptual advantages of discrete event formalism. International Journal of General Systems, 6:57–73, 1980.

    MATH  Google Scholar 

  49. P. Hogeweg and B. Hesper. A model study on biomorphological description. Pattern Recognition, 6:165–179, 1974.

    Google Scholar 

  50. H. Honda. Description of the form of trees by the parameters of the tree-like body: Effects of the branching angle and the branch length on the shape of the tree-like body. Journal of Theoretical Biology, 31:331–338, 1971.

    Google Scholar 

  51. H. Honda, P. B. Tomlinson, and J. B. Fisher. Computer simulation of branch interaction and regulation by unequal flow rates in botanical trees.. American Journal of Botany,68:569–585, 1981.

    Google Scholar 

  52. C. Jacob. Modeling growth with L-systems and Mathematica. Mathematica in Education and Research, 4(3):12–19, 1995.

    Google Scholar 

  53. M. Jaeger and P. de Reffye. Basic concepts of computer simulation of plant growth. Journal of Biosciences, 17(3):275–291, 1992.

    Google Scholar 

  54. M. James, J. Hanan, and P. Prusinkiewicz. CPFG version 2.0 user’s manual. Manuscript, Department of Computer Science, The University of Calgary, 1993, 50 pages.

    Google Scholar 

  55. J. M. Janssen and A. Lindenmayer. Models for the control of branch positions and flowering sequences of capitula in Mycelis muralis (L.) Dumont (Compositae). New Phytologist, 105:191–220, 1987.

    Google Scholar 

  56. H. Jürgensen. Probabilistic L systems. In A. Lindenmayer and G. Rozenberg, editors, Automata, languages, development, pages 211–225. North-Holland, Amsterdam, 1976.

    Google Scholar 

  57. H. Jürgensen, H. Shyr, and G. Thierrin. Monoids with disjunctive identity and their codes. Acta Mathematica Hungarica, 47(3–4):299–312, 1986.

    MathSciNet  MATH  Google Scholar 

  58. J. Kemeny. A philosopher looks at science. Van Nostrand, Princeton, 1959.

    Google Scholar 

  59. B. W. Kernighan and D. M. Ritchie. The C programming language. Second edition. Prentice Hall, Englewood Cliffs, 1988.

    Google Scholar 

  60. D. E. Knuth. Semantics of context-free languages. Mathematical Systems Theory, 2(2):191–220, 1968.

    MathSciNet  Google Scholar 

  61. W. Kurth. Growth grammar interpreter GROGRA 2.4: A software tool for the 3-dimensional interpretation of stochastic, sensitive growth grammars in the context of plant modeling. Introduction and reference manual. Forschungszentrum Waldökosysteme der Universität Göttingen, Göttingen, 1994.

    Google Scholar 

  62. W. Kurth. Morphological models of plant growth: Possibilities and ecological relevance. Ecological Modelling, 75/76:299–308, 1994.

    Google Scholar 

  63. W. Kurth. Stochastic sensitive growth grammars: A basis for morphological models of tree growth. Naturalia Monspeliensia, 1996. In press.

    Google Scholar 

  64. W. Kurth and D. Lanwert. Biometrische Grundlagen far ein dynamisches Architekturmodell der Fichte (Picea abies (L.) Karst.). Allgemeine Forst and Jagdzeitung, 166:177–184, 9/10 1995.

    Google Scholar 

  65. C. M. Liddell and D. Hansen. Visualizing complex biological interactions in the soil ecosystem. The Journal of Visualization and Computer Animation,4:3–12, 1993.

    Google Scholar 

  66. A. Lindenmayer. Developmental systems and languages in their biological context. In G. T. Herman and G. Rozenberg, Developmental systems and languages. North-Holland, Amsterdam, 1975, pp. 1–40.

    Google Scholar 

  67. A. Lindenmayer. Mathematical models for cellular interaction in development, Parts I and II. Journal of Theoretical Biology,18:280–315, 1968.

    Google Scholar 

  68. A. Lindenmayer. Developmental systems without cellular interaction, their languages and grammars. Journal of Theoretical Biology,30:455–484, 1971.

    Google Scholar 

  69. A. Lindenmayer. Adding continuous components to L-systems. In G. Rozenberg and A. Salomaa, editors, L Systems, Lecture Notes in Computer Science 15, pages 53–68. Springer-Verlag, Berlin, 1974.

    Google Scholar 

  70. A. Lindenmayer. Developmental algorithms for multicellular organisms: A survey of L-systems. Journal of Theoretical Biology, 54:3–22, 1975.

    MathSciNet  Google Scholar 

  71. A. Lindenmayer. Theories and observations of developmental biology. In R. E. Butts and J. Hintikka, editors, Foundational problems in special sciences,pages 103–118. D. Reidel, Dordrecht, 1977.

    Google Scholar 

  72. A. Lindenmayer. Algorithms for plant morphogenesis. In R. Sattler, editor, Theoretical plant morphology,pages 37–81. Leiden University Press, The Hague, 1978.

    Google Scholar 

  73. A. Lindenmayer. Developmental algorithms: Lineage versus interactive control mechanisms. In S. Subtelny and P. B. Green, editors, Developmental order: Its origin and regulation,pages 219–245. Alan R. Liss, New York, 1982.

    Google Scholar 

  74. A. Lindenmayer. Positional and temporal control mechanisms in inflorescence development. In P. W. Barlow and D. J. Carr, editors, Positional controls in plant development. University Press, Cambridge, 1984.

    Google Scholar 

  75. A. Lindenmayer. Models for multicellular development: Characterization, inference and complexity of L-systems. In A. Kelemenová and J. Kelemen, editors, Trends, techniques and problems in theoretical computer science, Lecture Notes in Computer Science 281, pages 138–168. Springer-Verlag, Berlin, 1987.

    Google Scholar 

  76. A. Lindenmayer and H. Jürgensen. Grammars of development: Discrete-state models for growth, differentiation and gene expression in modular organisms. In G. Rozenberg and A. Salomaa, editors, Lindenmayer systems: Impacts on theoretical computer science, computer graphics, and developmental biology, pages 3–21. Springer-Verlag, Berlin, 1992.

    Google Scholar 

  77. A. Lindenmayer and P. Prusinkiewicz. Developmental models of multicellular organisms: A computer graphics perspective. In C. G. Langton, editor, Artificial Life, pages 221–249. Addison-Wesley, Redwood City, 1988.

    Google Scholar 

  78. A. Lindenmayer and G. Rozenberg, editors. Automata, languages, development. North-Holland, Amsterdam, 1976.

    MATH  Google Scholar 

  79. J. Lück, H. B. Lück, and M. Balckali. A comprehensive model for acrotonic, mesotonic, and basitonic branching in plants. Acta Biotheoretica, 38:257–288, 1990.

    Google Scholar 

  80. N. Macdonald. Trees and networks in biological models. J. Wiley & Sons, New York, 1983.

    Google Scholar 

  81. B. B. Mandelbrot. The fractal geometry of nature. W. H. Freeman, San Francisco, 1982.

    MATH  Google Scholar 

  82. C. K. McClelland. On the regularity of blooming in the cotton plant. Science, XLIV:578–581, 1916.

    Google Scholar 

  83. R. A. Morelli, R. E. Walde, E. Akstin, and C. W. Schneider. L-system representation of speciation in the red algal genus Dipterosiphonia (Ceramiales, Rhodomelaceae). The Journal of Theoretic Biology, 149:453–465, 1991.

    Google Scholar 

  84. B. Moulia. The biomechanics of leaf rolling. Biomimetics, 2(3):267–281, 1994.

    Google Scholar 

  85. B. Moulia and H. Sinoquet. Three-dimensional digitizing systems for plant canopy geometrical structure: a review. In C. Varlet-Grancher, R. Bonhomme, and H. Sinoquet, editors, Crop structure and light microclimate: Characterization and applications,pages 183–193. INRA, Paris, 1993.

    Google Scholar 

  86. K. J. Niklas. Plant biomechanics: an engineering approach to plant form and function. The University of Chicago Press, Chicago, 1992.

    Google Scholar 

  87. T. Nishida. K0L-systems simulating almost but not exactly the same development - the case of Japanese cypress. Memoirs Fac. Sci., Kyoto University, Ser. Bio, 8:97–122, 1980.

    Google Scholar 

  88. S. Papert. Mindstorms: Children, computers and powerful ideas. Basic Books, New York, 1980.

    Google Scholar 

  89. F. P. Preparata and R. T. Yeh. Introduction to discrete structures. Addison-Wesley, Reading, Massachusetts, 1973.

    Google Scholar 

  90. P. Prusinkiewicz. Graphical applications of L-systems. In Proceedings of Graphics Interface ‘86 - Vision Interface ‘86, pages 247–253, 1986.

    Google Scholar 

  91. P. Prusinkiewicz. Applications of L-systems to computer imagery. In H. Ehrig, M. Nagl, A. Rosenfeld, and G. Rozenberg, editors, Graph grammars and their application to computer science; Third International Workshop, pages 534–548. Lecture Notes in Computer Science 291. Springer-Verlag, Berlin, 1987.

    Google Scholar 

  92. P. Prusinkiewicz. Visual models of morphogenesis. Artificial Life, 1(1/2):6174, 1994.

    Google Scholar 

  93. P. Prusinkiewicz, M. Hammel, and E. Mjolsness. Animation of plant development. Proceedings of SIGGRAPH 93 (Anaheim, California, August 1–6, 1993). In Computer Graphics Proceedings, Annual Conference Series, 1993. ACM SIGGRAPH, New York, 1993, pp. 369–378.

    Google Scholar 

  94. P. Prusinkiewicz and J. Hanan. Lindenmayer systems, fractals, and plants, Lecture Notes in Biomathematics 79. Springer-Verlag, Berlin, 1989.

    MATH  Google Scholar 

  95. P. Prusinkiewicz and J. Hanan. Visualization of botanical structures and processes using parametric L-systems. In D. Thalmann, editor, Scientific visualization and graphics simulation, pages 183–201. J. Wiley & Sons, Chichester, 1990.

    Google Scholar 

  96. P. Prusinkiewicz and J. Hanan. L-systems: From formalism to programming languages. In G. Rozenberg and A. Salomaa, editors, Lindenmayer systems: Impacts on theoretical computer science, computer graphics, and developmental biology, pages 193–211. Springer-Verlag, Berlin, 1992.

    Google Scholar 

  97. P. Prusinkiewicz, M. James, and R. Měch. Synthetic topiary. Proceedings of SIGGRAPH ‘84 (Orlando, Florida, July 24–29, 1994), pages 351–358, ACM SIGGRAPH, New York, 1994.

    Google Scholar 

  98. P. Prusinkiewicz and L. Kari. Subapical bracketed L-systems. In J. Cuny, H. Ehrig, G. Engels, G. Rozenberg, editors, graph grammars and their application to computer science; Fifth International Workshop, pages 550–564. Lecture Notes in Computer Science 1073. Springer-Verlag, Berlin, 1996.

    Google Scholar 

  99. P. Prusinkiewicz and A. Lindenmayer. The algorithmic beauty of plants. Springer-Verlag, New York, 1990. With J. S. Hanan, F. D. Fracchia, D. R. Fowler, M. J. M. de Boer, and L. Mercer.

    Google Scholar 

  100. P. Prusinkiewicz, A. Lindenmayer, and F.D. Fracchia. Synthesis of space-filling curves on the square grid. In H.-O. Peitgen, J. M. Henriques, and L. F. Penedo, editors, Fractals in the fundamental and applied sciences, pages 341–366. North-Holland, Amsterdam, 1991.

    Google Scholar 

  101. P. Prusinkiewicz, A. Lindenmayer, and J. Hanan. Developmental models of herbaceous plants for computer imagery purposes. Proceedings of SIG-GRAPH ‘88 (Atlanta, Georgia, August 1–5, 1988), in Computer Graphics 22, 4 (August 1988), pages 141–150, ACM SIGGRAPH, New York, 1988.

    Google Scholar 

  102. P. Prusinkiewicz, W. Remphrey, C. Davidson, and M. Hammel. Modeling the architecture of expanding Fraxinus pennsylvanica shoots using L-systems. Canadian Journal of Botany, 72:701–714, 1994.

    Google Scholar 

  103. P. Prusinkiewicz and G. Sandness. Koch curves as attractors and repellers. IEEE Computer Graphics and Applications, 8(6):26–40, November 1988.

    Google Scholar 

  104. D. M. Raup. Geometric analysis of shell coiling: general problems. Journal of Paleontology, 40:1178–1190, 1966.

    Google Scholar 

  105. D. M. Raup and A. Michelson. Theoretical morphology of the coiled shell. Science, 147:1294–1295, 1965.

    Google Scholar 

  106. W. R. Remphrey, B. R. Neal, and T. A. Steeves. The morphology and growth of Arctostaphylos uva-ursi (bearberry), parts I and II. Canadian Journal of Botany, 61(9):2430–2458, 1983.

    Google Scholar 

  107. P. M. Room. ‘Falling apart’ as a lifestyle: the rhizome architecture and population growth of Salvinia molesta. Journal of Ecology, 71:349–365, 1983.

    Google Scholar 

  108. P. M. Room and J. S. Hanan. Virtual cotton: a new tool for research, management and training. To appear in the Proceedings of the World Cotton Research Conference, Brisbane, Australia, February 14–17, 1994.

    Google Scholar 

  109. P. M. Room, J. S. Hanan, and P. Prusinkiewicz. Virtual plants: new perspectives for ecologists, pathologists, and agricultural scientists. Trends in Plant Science, 1(1):33–38, 1996.

    Google Scholar 

  110. P. M. Room, L. Maillette, and J. Hanan. Module and metamer dynamics and virtual plants. Advances in Ecological Research, 25:105–157, 1994.

    Google Scholar 

  111. G. Rozenberg. T0L systems and languages. Information and Control, 23:357–381, 1973.

    MathSciNet  MATH  Google Scholar 

  112. G. Rozenberg, K. Ruohonen, and A. Salomaa. Developmental systems with fragmentation. International Journal of Computer Mathematics, 5:177–191, 1976.

    MathSciNet  MATH  Google Scholar 

  113. G. Rozenberg and A. Salomaa. The mathematical theory of L systems. Academic Press, New York, 1980.

    MATH  Google Scholar 

  114. G. Rozenberg and A. Salomaa. When L was young. In G. Rozenberg and A. Salomaa, editors, The book of L, pages 383–392. Springer-Verlag, Berlin, 1986.

    Google Scholar 

  115. K. Ruohonen. Developmental systems with interaction and fragmentation. Information and Control, 28:91–112, 1975.

    MathSciNet  MATH  Google Scholar 

  116. A. Salomaa. Formal languages. Academic Press, New York, 1973.

    MATH  Google Scholar 

  117. C. W. Schneider and R. E. Walde. L-system computer simulations of branching divergence in some dorsiventral members of the tribe Polysiphonieae (Rhodomelaceae, Rhodophyta). Phycologia, 31(6):581–590, 1992.

    Google Scholar 

  118. C. W. Schneider, R. E. Walde, and R. A. Morelli. L-systems computer models generating distichous from spiral organization in the Dasyaceae (Ceramiales, Rhodophyta). To appear in the European Journal of Phycology.

    Google Scholar 

  119. M. F. Shebell. Modeling branching plants using attribute L-systems. Master’s thesis, Worcester Polytechnic Institute, 1986.

    Google Scholar 

  120. A. R. Smith. Plants, fractals, and formal languages. Proceedings of SIG-GRAPH ‘84 (Minneapolis, Minnesota, July 22–27, 1984) in Computer Graphics, 18, 3 (July 1984), pages 1–10, ACM SIGGRAPH, New York, 1984.

    Google Scholar 

  121. A. R. Smith. About the cover: Reconfigurable machines. Computer, 11(7):3–4, 1978.

    Google Scholar 

  122. A. L. Szilard and R. E. Quinton. An interpretation for DOL systems by computer graphics. The Science Terrapin,4:8–13, 1979.

    Google Scholar 

  123. A. Takenaka. A simulation model of tree architecture development based on growth response to local light environment. Journal of Plant Research, 107:321–330, 1994.

    Google Scholar 

  124. J. H. M. Thornley and I. R. Johnson. Plant and crop modeling: A mathematical approach to plant and crop physiology. Oxford University Press, New York, 1990.

    Google Scholar 

  125. A. Tunbridge and H. Jones. An L-systems approach to the modelling of fungal growth. The Journal of Visualization and Computer Animation, 6:91–107, 1995.

    Google Scholar 

  126. A. Turing. The chemical basis of morphogenesis. Philosophical Transactions of the Royal Society of London B, 237:37–72, 1952.

    Google Scholar 

  127. H. von Koch. Une méthode géométrique élémentaire pour l’étude de certaines questions de la théorie des courbes planes. Acta Mathematica, 30:145–174, 1905.

    Google Scholar 

  128. D. M. Waller and D. A. Steingraeber. Branching and modular growth: Theoretical models and empirical patterns. In J. B. C. Jackson and L. W. Buss, editors, Population biology and evolution of clonal organisms, pages 225–257. Yale University Press, New Haven, 1985.

    Google Scholar 

  129. H. M. Ward. Trees. Volume V: Form and habit. Cambridge University Press, Cambridge, 1909.

    Google Scholar 

  130. J. Weber and J. Penn. Creation and rendering of realistic trees. Proceedings of SIGGRAPH ‘85 (Los Angeles, California, August 6–11, 1995), pages 119–128, ACM SIGGRAPH, New York, 1995.

    Google Scholar 

  131. F. D. Whisler, B. Acock, D. N. Baker, R. E. Fye, H. F. Hodges, J. R. Lambert, H. E. Lemmon, J. M. McKinion, and V. R. Reddy. Crop simulation models in agronomic systems. Advances in Agronomy, 40:141–208, 1986.

    Google Scholar 

  132. B. F. Wilson. The growing tree. The University of Massachusetts Press, Amherst, 1984.

    Google Scholar 

  133. T. Yokomori. Stochastic characterizations of EOL languages. Information and Control, 45:26–33, 1980.

    MathSciNet  MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Prusinkiewicz, P., Hammel, M., Hanan, J., Měch, R. (1997). Visual Models of Plant Development. In: Rozenberg, G., Salomaa, A. (eds) Handbook of Formal Languages. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59126-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59126-6_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63859-6

  • Online ISBN: 978-3-642-59126-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics