Robinia pseudoacacia, a model tree legume

  • Astrid Wetzel
  • Patrick von Berswordt-Wallrabe
  • Marie-Luise Meinhold
  • Mechthild Röhm
  • Petra Scheidemann
  • Wolfgang Streit
  • Dietrich Werner
Conference paper
Part of the NATO ASI Series book series (volume 39)

Abstract

Robinia pseudoacacia has a number of attributes as a model tree legume, due to one of the highest net photosynthetic rates amoung woody plants (up to 36 µM CO2 x m-2 x s -1), resistance to a number of stresses, early flowering, production of abundant seeds already after three years and a significant genetic variation (Hanover, 1990). With these characters it has a number of advantages compared to the list of 50 nitrogen fixing trees proposed by the Nitrogen Fixing Tree Association considered for their economical or ecological importance (Brewbaker, 1990). All these specific characters can be studied in relation to nodulation and nitrogen fixation by Rhizobium loti (Werner et al., 1996), to VA-mycorrhiza infection (Werner, 1992) and also to other ecological important aspects such as growth on degraded soils due to the very plastic and efficient root system.

Keywords

Sugar Phosphorus HPLC Magnesium Flavonoid 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bécard, G., L.P. Taylor, D.D. Douds, Jr., P.E. Pfeffer and L.W. Doner (1995) Flavonoids are not necessary plant signal compounds in arbuscular mycorrhizal symbioses. MPMI 8, 252–258CrossRefGoogle Scholar
  2. Brewbaker, J.L. (1990) Nitrogen fixing trees. In: Fast Growing Trees and Nitrogen Fixing Trees (eds. D. Werner, P. Müller), 253–262, G. Fischer Verlag, Stuttgart, New YorkGoogle Scholar
  3. Evans, H.J. and R.H. Burris (1992) Highlights in biological nitrogen fixation during the last 50 years. In: Biological Nitrogen Fixation (eds. G. Stacey, R.H. Burris, H.J. Evans), 1–42, Chapman & Hall, New YorkGoogle Scholar
  4. Fellay, R., P. Rochepeau, B. Relic and W.J. Broughton (1995) Signals to and emanating from Rhizobium largely control symbiotic specificity. In: Pathogenesis and Host Specificity in Plant Diseases. Vol. I. Prokaryotes (eds. U.S. Singh, R.P. Singh, K. Kohmoto), 199–220, Pergamon/Elsevier Sci. Ltd., OxfordGoogle Scholar
  5. Fuhrmann, G.F. and B. Völker (1993) Misuse of graphical analysis in nonlinear sugar transport kinetics by Eadie-Hofstee plots. Bioch. Biophys. Acta 1145, 180–182CrossRefGoogle Scholar
  6. George, E. and H. Marschner (1996) Nutrient and water uptake by roots of forest trees. Z. Pflanzenernähr. Bodenk. 159, 11–21CrossRefGoogle Scholar
  7. Hanover, J.W. (1990) Physiological genetics of black locust (Robinia pseudoacacia L.): A model multipurpose tree species. In: Fast Growing Trees and Nitrogen Fixing Trees (eds. D. Werner, P. Müller), 253–262, G. Fischer Verlag, Stuttgart, New YorkGoogle Scholar
  8. Lewin, A., E. Cervantes, W. Chee-Hoong and W.J. Broughton (1990) NodSU, two new nod genes of the broad host range Rhizobium strain NGR234 encode host-specific nodulation of the tropical tree Leucaena leucocephala. MPMI 5, 517–326Google Scholar
  9. McCray Batzli, J., W.R. Graves and P. van Berkum (1992) Diversity among rhizobia effective with Robinia pseudoacacia L. Appl. Environ. Microbiol. 58, 2137–2143Google Scholar
  10. Röhm, M. and D. Werner (1991) Nitrate levels affect the development of the black locust-Rhizobium symbiosis. Trees 5, 227–231CrossRefGoogle Scholar
  11. Röhm, M. and D. Werner (1992) Robinia pseudoacacia - Rhizobium symbiosis: Isolation and characterization of a fast nodulating and efficiently nitrogen fixing Rhizobium strain. Nitrogen Fixing Tree Res. Reports 10, 193–197Google Scholar
  12. Röhm, M., W. Streit, H.J. Evans and D. Werner (1993) Hydrogen uptake by Robinia pseudoacacia nodules. Trees 8, 99–103CrossRefGoogle Scholar
  13. Schäfers, B. and D. Werner (1993) Nodulation of Robinia pseudoacacia by two Rhizobium strains. Nitrogen Fixing Tree Res. Reports 11, 121–126Google Scholar
  14. Scheidemann, P. and A. Wetzel (1996) Identification and characterization of flavonoids in the root exudate of Robinia pseudoacacia. Trees (in press) Google Scholar
  15. Werner, D. (1992) Symbiosis of Plants and Microbes. Chapman & Hall, London, New YorkGoogle Scholar
  16. Werner, D., M. Röhm, B. Schäfers, P. Scheidemann and A. Wetzel (1996) Signalling in the Robinia-Rhizobium Symbiosis. In Trees - Contributions to Modern Tree Physiology (eds. H. Renneberg, W. Eschrich, H. Ziegler), SPB Academic Publ., The Hague (in press) Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Astrid Wetzel
    • 1
  • Patrick von Berswordt-Wallrabe
    • 1
  • Marie-Luise Meinhold
    • 1
  • Mechthild Röhm
    • 1
  • Petra Scheidemann
    • 1
  • Wolfgang Streit
    • 1
  • Dietrich Werner
    • 1
  1. 1.Fachbereich Biologie, FG Angewandte Botanik und ZellbiologiePhilipps-UniversitätMarburgGermany

Personalised recommendations