The discovery of the Rhesus system in 1940 by K. Landsteiner and A.S. Wiener (Landsteiner and Wiener 1940) constituted the most important event in the science of human blood groups since the description of the ABO blood groups, by Landsteiner, at the beginning of the century. The discovery of the Rh factor shed light on the process of fetomaternal alloimmunization and explained transfusion reactions, of which the causes had, until then, remained unknown.


Blood Group Nonhuman Primate Blood Group System Rhesus System RHCE Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agre P, Cartron J-P. Molecular biology of the Rh antigens. Blood 78 (3): 551–563, 1991PubMedGoogle Scholar
  2. Agre P, Cartron J-P. The molecular biology of the Rh antigens. In: Agre P.C, Cartron J-P (eds) Protein blood group antigens of the red cells. John Hopkins University Press, Baltimore, pp 20–52, 1992Google Scholar
  3. Agre P, Saboori AM, Asimos A, Smith BL. Purification and partial characterization of the Mr 30,000 integral membrane protein associated with the erythrocyte Rh(D) antigen. J Biol Chem 262: 17497, 1987PubMedGoogle Scholar
  4. Allen FH, Tippett PA. A new Rh blood type which reveals the Rh antigen G. Vox Sang 3: 321–330, 1958PubMedCrossRefGoogle Scholar
  5. Anstee DJ, Tanner MJA. Biochemical aspects of the blood group Rh (Rhesus) antigens. In: Tanner MJA, Anstee DJ (eds) Red cell membrane and red cell antigens, vol 6, no 2. pp 402–422 (Clinical haematology), 1993Google Scholar
  6. Arce MA, Thompson ES, Wagner S, Coyne KE, Ferdman BA, Lublin DM. Molecular cloning of RhD cDNA derived from a gene present in RhD-positive, but not RhD-negative individuals. Blood 82: 651–655, 1993PubMedGoogle Scholar
  7. Avent ND, Ridgwell K, Mawby WJ, Tanner MJA, Anstee DJ, Kumpel B. Protein-sequence studies on Rh-related polypeptides suggest the presence of at least two groups of proteins which are associated in the human red-cell membrane. Biochem J 256: 1043–1046, 1988aGoogle Scholar
  8. Avent ND, Judson PA, Parsons SF, Mallinson G, Anstee DJ, Tanner MJA, Evans PR, Hodges E, Macivers AG, Holmes C. Monoclonal antibodies that recognize different membrane proteins that are deficient in Rh,,,,11 human erythrocytes. Biochem J 251: 499–505, 1988bGoogle Scholar
  9. Avent ND, Ridgwell K, Tanner MJA, Anstee DJ. cDNA cloning of a 3o kDa erythrocyte membrane protein associated with Rh (Rhesus)-blood-group-antigen expression. Biochem J 271: 821–825, 1990PubMedGoogle Scholar
  10. Avent ND, Butcher SK, Liu W, Mawby WJ, Mallinson G, Parsons SF, Anstee DJ, Tanner MJA. Localization of the C termini of the Rh (Rhesus) polypeptides to the cytoplasmic face of the human erythrocyte membrane. J Biol Chem 267: 15134–15139, 1992PubMedGoogle Scholar
  11. Bailly P, Hermand P, Callebaut I, Sonneborn HH, Khamlichi S, Mornon JP, Cartron J-P. The LW blood group glycoprotein is homologous to intercellular adhesion molecules. Proc Natl Acad Sci USA 91: 5306, 1994PubMedCrossRefGoogle Scholar
  12. Bailly P, Tontti E, Hermand P, Cartron J-P, Gahmberg CG. The red cell LW blood group protein is an intercellular adhesion molecule which binds to CD11/CD18 leukocyte integrins. Eur J Immunol 25: 3316–3320, 1995PubMedCrossRefGoogle Scholar
  13. Basu MK, Flamm M, Schacter D, Bertles JF, Maniatis T. Effects of modulating erythrocyte membrane cholesterol. Biochem Biophys Res Commun 95: 887, 1980PubMedCrossRefGoogle Scholar
  14. Beckers EAM, Faas BHW, Simsek S, Overbeeke MAM, Van Rhenen DJ, Wallace M, Von Dem Borne AEGK, Van Der Schoot CE. The genetic basis of a new partial D antigen: DDBT. Br J Haematol 93: 720–727, 1996aCrossRefGoogle Scholar
  15. Beckers EAM, Faas BHW, Von Dem Borne AEGK, Overbeeke MAM, Van Rhenen DJ, Van Der Schoot CE. The RollHarRh:33 phenotype results from substitution of exon 5 of the RHCE gene by the corresponding exon of the RHD gene. Br J Haematol 92751–757 1996bGoogle Scholar
  16. Beckers E, Faas B, von dem Borne A, Overbeeke M, van Rhenen D, van der Schoot C. Rh rear-rangements leading to DIIIc, DBT, RoHar. Transfusion 35 [Suppl] (abstr S201 ), 1995Google Scholar
  17. Bernard J, Ruffié J. Ecologie humaine, caractères héréditaires du sang. Masson, Paris (Hématologie géographique, vol 1 ), 1966Google Scholar
  18. Bernard J, Ruffié J. Variations hématologiques acquises: l’hématologie et l’évolution. Masson, Paris (Hématologie géographique, vol 2 ), 1972Google Scholar
  19. Blanchard D, Bloy C, Hermand P, Cartron J-P, Saboori A, Smith SL, Agre P. Two-dimensional iodopeptide mapping demonstrates erythrocyte Rh D, c, and E polypeptides are structurally homologous but nonidentical. Blood 72: 1424, 1988Google Scholar
  20. Blancher A, Roubinet F, Oksman F, Ternynck T, Broly H, Chevaleyre J, Vezon G, Ducos J. Polyreactivity of human monoclonal antibodies: human anti-Rh monoclonal antibodies of IgM isotype are frequently polyreactive. Vox Sang 61: 196–204, 1991PubMedCrossRefGoogle Scholar
  21. Blancher A, Calvas P, Ruffié J. Etude des équivalents des antigènes Rhésus chez les primates non hominiens. C R Soc Biol 186: 682–695, 1992aGoogle Scholar
  22. Blancher A, Socha W. W, Ruffié J. Diversity of human anti-D monoclonal antibodies revealed by reactions with chimpanzee red blood cells. Vox Sang 63: 112–118, 1992bCrossRefGoogle Scholar
  23. Blancher A, Clayton J, Socha WW, Ruffié J. Application of maximum likelihood statistics for the population and family studies of inheritance of the chimpanzee R-C-E-F and V-A-B-D blood groups. J Med Primatol 22: 44–49, 1993aGoogle Scholar
  24. Blancher A, Ruffié J, Socha WW., 1993b ) The R-C-E-F blood group system of chimpanzee: serology and genetics. J Med Primatol 22: 13–18Google Scholar
  25. Blancher A, Reid M, Alié-Daram S. J, Dugoujon J M, Roubinet E., 1996 ) Characterization of a human anti-hrB-like monoclonal antibody. Immunohematology 12: 119–121, 1996Google Scholar
  26. Bloy C, Blanchard D, Lambin P, Goossens D, Rouger P, Salmon C, Cartron J-P., 1987 ) Human monoclonal antibody against Rh(D) antigen: partial characterization of rh Rh(D) polypeptide from human erythrocytes. Blood 69: 1491PubMedGoogle Scholar
  27. Bloy C, Blanchard D, Dahr W, Beyreuther K, Salmon C, Cartron J-P. Determination of the N-terminal sequence of human red cell Rh(D) polypeptide and demonstration that the Rh(D), (c) and (E) antigens are carried by distinct polypeptide chains. Blood 72: 661, 1988aGoogle Scholar
  28. Bloy C, Blanchard D, Lambin P, Goossens D, Rouger P, Salmon C, Masouredis SP, Cartron J-P. Characterization of the C, c, E, and G antigens of the Rh blood group system with human monoclonal antibodies. Mol Immunol 25: 925, 1988bCrossRefGoogle Scholar
  29. Bloy C, Blanchard D, Hermand P, Kordowicz M, Sonneborn HH, Cartron J-P. Properties of the blood group LW glycoprotein and preliminary comparison with Rh proteins. Mol Immunol 26: 1013–1019, 1989PubMedCrossRefGoogle Scholar
  30. Bloy C, Hermand P, Cherif-Zahar B, Sonneborn H, Cartron J-P. Comparative analysis by two-dimensional iodopeptide mapping of the RhD protein and LW glycoprotein. Blood 75: 2245, 1990PubMedGoogle Scholar
  31. Blunt T, Daniels G, Carritt B. Serotype switching in a partially deleted gene. Vox Sang 67: 397–401, 1994PubMedCrossRefGoogle Scholar
  32. Bourel D, Lecointre M, Genetet N, Guiguen-Duchesne M, Genetet B. Murine monoclonal antibody suitable for use as an Rh reagent anti-e. Vox Sang 52: 85–88, 1987PubMedCrossRefGoogle Scholar
  33. Boylston AN, Gardner B, Anderson RL, Hughes-Jones NC. Production of human IgM anti-D in tissue culture by EB-virus transformed lymphocytes. Scand J Immunol 12: 355–358, 1980PubMedCrossRefGoogle Scholar
  34. Brown PJ, Evans JP, Sinor LT, Tilzer LT, Plapp FV. The Rhesus D antigen: a dicyclohexyl-carbodiimide-binding proteolipid. Am J Pathol ll0(2): 127–134, 1983Google Scholar
  35. Calvas P, Blancher A, Depétris D, Salvignol I, Chérif-Zahar B, Mattéi MG. Chimpanzee Rh-like blood group genes map to chromosome region (1p34.2–1p36.1) by in situ hybridization. Cytogenet Cell Genet 65: 247–249, 1994PubMedCrossRefGoogle Scholar
  36. Cartron J-P. Defining the Rh blood group antigens. Blood Rev 8: 199–212, 1994PubMedCrossRefGoogle Scholar
  37. Cartron J-P, Agre P. Rh blood group antigens: protein and gene structure. Semin Hematol 30 (3): 193–208, 1993PubMedGoogle Scholar
  38. Cartron J-P, Agre P. Rh blood groups and Rh-deficiency syndrome. In: Cartron J-P, Rouger P (eds) Molecular basis of human blood group antigens. Plenum, NewYork (Blood cell biochemistry, vol 6 ), 1995Google Scholar
  39. Ceppellini R, Nasso S, Tecilazich E (eds) La malattia emolitica del Milano, 1952Google Scholar
  40. Ceppellini R, Dunn LC, Turri M. An interaction between alleles at the Rh locus in man which weakens the reactivity of the Rho factor (Du). Proc Natl Acad Sci USA 41: 283–288, 1955PubMedCrossRefGoogle Scholar
  41. Chérif-Zahar B, Bloy C, Le Van Kim C, Blanchard D, Bailly P, Hermand P, Salmon C, Cartron J-P, Colin Y. Molecular cloning and protein structure of a human blood group Rh polypeptide. Proc Natl Acad Sci USA 87: 6243–6247, 1990PubMedCrossRefGoogle Scholar
  42. Chérif-Zahar B, Mattéi MG, Le Van Kim C, Bailly P, Cartron JP, Colin Y. Localisation of the human Rh blood group gene structure to chromosome 1p34.3–1p36.1 region by in situ hybridization. Hum Genet 86: 398–400, 1991PubMedCrossRefGoogle Scholar
  43. Chérif-Zahar B, Le Van Kim C, Rouillac C, Raynal V, Cartron JP, Colin Y. Organization of the gene encoding the human blood group RhCcEe antigens and characterization of the promoter region. Genomics 19: 68–74, 1994aCrossRefGoogle Scholar
  44. Chérif-Zahar B, Raynal VC, D’Ambrosio AA, Cartron JP, Colin Y. Molecular analysis of the structure and expression of the RH locus in individuals with D--Dc- DCw-gene complexes. Blood 12: 4354–4360, 1994bGoogle Scholar
  45. Chérif-Zahar B, Raynal V, Gane P, Mattei MG, Bailly P, Gibbs B, Colin Y, Cartron J-P. Candidate gene acting as a suppressor of the RH locus in most cases of Rh-deficiency. Nature Genet 12: 168–173, 1996aCrossRefGoogle Scholar
  46. Chérif-Zahar B, Raynal V, Gane P, Mattei MG, Bailly P, Gibbs B, Colin Y, Cartron J-P. Candidate gene acting as a suppressor of the RH locus in most cases of Rh-deficiency. Nature Genet 12: 168–173, 1996aCrossRefGoogle Scholar
  47. Colin Y, Chérif-Zahar B, Le Van Kim C, Raynal V, Van Huffel V, Cartron J-P. Genetic basis of the RhD-positive and RhD-negative blood group polymorphism as determined by Southern analysis. Blood 78: 2747, 1991PubMedGoogle Scholar
  48. Colin Y, Cherif-Zahar B, Le Van Kim C, Mouro I, Cartron J-P. Recent advances in molecular and genetic analysis of Rh blood group structures. J Med Primatol 22: 36–43, 1993PubMedGoogle Scholar
  49. Coombs RRA, Mourant AE, Race RR. Detection of weak and incomplete Rh agglutinins: a new test. Lancet ii: 15, 1945 )CrossRefGoogle Scholar
  50. Coombs RRA, Mourant AE, Race RR. In vivo isosensitization of red cells in babies with haemolytic disease. Lancet i:264–266, 1946CrossRefGoogle Scholar
  51. Crawford DH, Barlow MJ, Harrisson JF, Winger L, Huehns ER. Production of human monoclonal antibody to Rhesus D antigen. Lancet i: 386–388, 1983Google Scholar
  52. Daniels G, Lomas C, Wallace M, Tippett P. Epitopes of RhD: serology and molecular genetics. In: Sylberstein LE (ed) Molecular and functional aspects of blood group antigens. American Association of Blood Banks, Bethesda, pp 193–228, 1995Google Scholar
  53. de Vetten MP, Agre P. The Rh polypeptide is a major fatty acid acylated erythrocyte membrane protein. J Biol Chem 263: 18193–18196, 1988PubMedGoogle Scholar
  54. Diamond LK, Denton RL. Rh agglutination in various media with particular reference to the value of albumin. J Lab Clin Med 30: 821–830, 1945Google Scholar
  55. Dugoujon JM, de Lange GG, Blancher A, Alie-Daram S, Marty Y. Characterization of an IgG2 G2m(23) anti-Rh-D antibody. Vox Sang 57: 133–136, 1989PubMedCrossRefGoogle Scholar
  56. Elder JH, Pickett RA, Hampton H, Lerner RA. Radioiodination of proteins in single polyacrylamide gel slices. J Biol Chem 252: 6510, 1977PubMedGoogle Scholar
  57. Eyers SAC, Ridgwell K, Mawby WJ, Tanner MJA. Topology and organization of human Rh (Rhesus) blood group-related polypeptides. J Biol Chem 269 9: 6417–6423, 1994PubMedGoogle Scholar
  58. Faas B, Beckers E, Simek S, Overbeeke M, Cuijpers H, Pepper R, van Rhenen D, von dem Borne A, van der Schoot C. Involvement of Ser 103 in the RH G epitope. Transfusion 35 [Suppl] (abstr S200 ), 1995Google Scholar
  59. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17: 368–376, 1981PubMedCrossRefGoogle Scholar
  60. Felsenstein J. PHYLIP: Phylogenesis inference package (version 3. 57c ), 1995Google Scholar
  61. Fraser RH, Inglis G, Allan JC, Murphy MT, Allan EK, Mackie A, Mitchell R. Murine mono-clonal antibody with anti-e-like specificity: suitability for screening for e-negative cells. Transfusion 30 (3): 226–229, 1990PubMedCrossRefGoogle Scholar
  62. Gahmberg CG. Molecular characterization of the human red cell Rho (D) antigen. EMBO J 2: 223, 1983PubMedGoogle Scholar
  63. Ghamberg CG, Karhi KK. Association of Rho (D) polypeptides with the membrane skeleton in Rho (D)-positive human red cells. J Immunol 133: 334, 1984Google Scholar
  64. Green FA. Studies on the Rh(D) antigen. Vox Sang 10: 32–53, 1965PubMedCrossRefGoogle Scholar
  65. Green FA. Erythrocyte membrane sulfhydryl groups and Rh antigen activity. Immunochemistry 4: 247, 1967PubMedCrossRefGoogle Scholar
  66. Green FA. Phospholipid requirement for Rh antigen activity. J Biol Chem 243: 5519, 1968PubMedGoogle Scholar
  67. Green FA. Erythrocyte membrane lipids and Rh antigen activity. J Biol Chem 247: 881, 1972PubMedGoogle Scholar
  68. Green FA. The mode of attenuation of erythrocyte membrane Rho (D) antigen activity by 5,5’-dithiobis-(2-nitrobenzoic acid) and protection against loss of activity by bound anti-Rho (D) antibody. Mol Immunol 20: 769–774, 1983aCrossRefGoogle Scholar
  69. Green FA, Owens NA, Hui HL, Jung CY, Cuppoletti J. Molecular size of the Rho(D) antigen of the human erythrocyte in situ by radiation inactivation. Mol Immunol 20(4):361–365, 1983bCrossRefGoogle Scholar
  70. Hartel-Schenk S, Agre P. Mammalian red cell membrane Rh polypeptides are selectively palmitoylated subunits of a macromolecular complex. J Biol Chem 267: 5569–5574, 1992PubMedGoogle Scholar
  71. Helenius A, Simons K. Solubilization of membranes by detergents. Biochim Biophys Acta 415: 29, 1975PubMedCrossRefGoogle Scholar
  72. Hermand P, Mouro I, Huet M, Bloy C, Suyama K, Goldstein J, Cartron J-P, Bailly P. Immunochemical characterization of Rhesus proteins with antibodies raised against synthetic peptides. Blood 82: 669–676, 1993PubMedGoogle Scholar
  73. Hermand P, Gane P, Mattei MG, Sistonen P, Cartron J-P, Bailly P. Molecular basis and expression of the LWa/LWb blood group polymorphism. Blood 84: 1590–1594, 1995Google Scholar
  74. Hermand P, Le Pennec PY, Rouger P, Cartron J-P, Bailly P. Characterization of the gene encoding the human LW blood group protein in LW’ and LW phenotypes. Blood 87 (7): 2962–2967, 1996PubMedGoogle Scholar
  75. Hermand P, Le Pennec PY, Rouger P, Cartron J-P, Bailly P. Characterization of the gene encoding the human LW blood group protein in LW’ and LW phenotypes. Blood 87 (7): 2962–2967, 1996PubMedGoogle Scholar
  76. Huang CH, Reid ME, Chen Y. Identification of a partial internal deletion in the RH locus causing the human erythrocyte D- phenotype. Blood 86: 784–790, 1995PubMedGoogle Scholar
  77. Huang CH, Reid ME, Chen Y. Identification of a partial internal deletion in the RH locus causing the human erythrocyte D- phenotype. Blood 86: 784–790, 1995PubMedGoogle Scholar
  78. Hughes-Jones NC, Green EJ, Hunt VA. Loss of Rh antigen activity following the action of phospholipase A2 on red cell stroma. Vox Sang 29: 184, 1975PubMedCrossRefGoogle Scholar
  79. Hyland CA, Wolter LC, Liew YW, Saul AA. Southern analysis of Rh blood group genes: association between restriction fragment length polymorphism patterns and Rh serotypes. Blood 83: 566–572, 1994aGoogle Scholar
  80. Hyland CA, Wolter LC, Saul A. Three unrelated RhD gene polymorphisms identified among blood donors with Rhesus CCee (r’r’) phenotypes. Blood 84: 321–324, 1994bGoogle Scholar
  81. Issitt PD. The Rh blood group system 1988: eight new antigens in nine years and some observations on the biochemistry and genetics of the system. Transfus Med Rev 3 (1): 1–12, 1989PubMedCrossRefGoogle Scholar
  82. Issitt PD. An invited review: the Rh antigen e its variants and some closely related aerological observations. Immunohematologyume 72: 29–36, 1991Google Scholar
  83. Issitt PD. The Rh blood groups. In: Garratty G (ed) Immunobiology of transfusion medicine. Marcel Dekker, New York, pp 111–141, 1994Google Scholar
  84. Jones J, Scott ML, Voak D. Monoclonal anti-D specificity and Rh D structure: criteria for selection of monoclonal anti-D reagents for routine typing of patients and donors. Transfus Med 5: 171–184, 1995PubMedCrossRefGoogle Scholar
  85. Kajii E, Umeneshi F, Iwamoto S, Ikemoto S. Isolation of a new cDNA clone encoding an Rh polypeptide associated with Rh blood group system. Hum Genet 91: 157–162, 1993PubMedCrossRefGoogle Scholar
  86. Kajii E, Umenishi F, Omi T, Ikemoto S. Intricate combinatorial patterns of exon splicing generate multiple Rh-related isoforms in human erythroid cells. Hum Genet 95: 657–665, 1995PubMedCrossRefGoogle Scholar
  87. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16a11–120, 1980Google Scholar
  88. Koskimies S. Human lymphoblastoid cell line producing specific antibody against Rh-anti- gen D. Scand J Immunol 11: 73–77, 1980PubMedCrossRefGoogle Scholar
  89. Krahmer M, Prohaska R. Characterization of human red cell Rhesus specific polypeptides by limited proteolysis. FEBS Lett 226: 105, 1987PubMedCrossRefGoogle Scholar
  90. Krahmer M, Prohaska R. Characterization of human red cell Rhesus specific polypeptides by limited proteolysis. FEBS Lett 226: 105, 1987PubMedCrossRefGoogle Scholar
  91. Lansteiner K, Wiener AS. An agglutinable factor in human blood recognized by immune sera for blood. Proc Soc Exp Biol Med 43: 223, 1940Google Scholar
  92. Lansteiner K, Wiener AS. Studies of an agglutinogen (Rh) in human blood reacting with anti-rheusus antisera and human isoantibodies J Exp Med 74: 309–320, 1941Google Scholar
  93. Le Van Kim C, Chérif-Zahar B, Raynal V, Mouro I Lopez M, Cartron J-P. Multiple Rh messenger RNA isoforms are produced by alternative splicing. Blood 80: 1074–1078, 1992aGoogle Scholar
  94. Le Van Kim C, Mouro I, Chérif-Zahar B, Raynal V, Cherier RC, Cartron JP, Colin Y. Molecular cloning and primary structure of the human blood group RhD polypeptide. Proc Natl Acad Sci USA 89: 10925–10929, 1992bCrossRefGoogle Scholar
  95. Leader KA, Kumpel BM, Poole GD, Kirkwood JT, Merry AH, Bradley BA. Human monoclonal anti-D with reactivity against category DV1 cells used in blood grouping and determination of the incidence of the category DV1 phenotype in the Dv population. Vox Sang 58: 106–111, 1990PubMedCrossRefGoogle Scholar
  96. Levine P, Celano MJ. Presence of “D-like” antigens on various monkey red blood cells. Nature 193 4811: 184–185, 1962PubMedCrossRefGoogle Scholar
  97. Levine P, Celano MJ. Agglutinating specificity of LW factor in Guinea pig and rabbit anti-Rh serums. Science 156 3783: 1744–1746, 1967PubMedCrossRefGoogle Scholar
  98. Levine P, Stetson RE. An unusual case of intragroup agglutination. JAMA 113: 126–127, 1939CrossRefGoogle Scholar
  99. Levine P, Burnham L, Katzin EM, Vogel P. The role of isoimmunization in the pathogenesis of erythroblastosis fetalis. Am J Obstet Gynecol 42: 925–937, 1941Google Scholar
  100. Levine P, Celano MJ, Fenichel R, Pollack W, Singher HA. “D-like” antigen in rhesus monkey human Rh positive and human Rh negative red blood cells. J Immunol 87: 747–752, 1961PubMedGoogle Scholar
  101. Levine P, Cellano MJ, Wallace J, Sanger R. A human “D-like” antibody. Nature 198: 596–597, 1963PubMedCrossRefGoogle Scholar
  102. Lomas C, Mougey R. Rh antigen D: variable expression in DVI phenotypes; a possible subdivision of category VI by a low frequency antigen (abstr). Transfusion 29 [Suppl)a4S, 1989Google Scholar
  103. Lomas C, Tippett P, Thompson KM, Melamed MD, Hughes-Jones N. Demonstration of seven epitopes on the Rh antigen D using monoclonal anti-D antibodies and red cells from D categories. Vox Sang 57: 261–264, 1989PubMedCrossRefGoogle Scholar
  104. Lomas C, McColl K, Tippett P. Further complexities of the Rh antigen D disclosed by test-ing category Dii cells with monoclonal anti-D. Transfus Med 3: 67–69, 1993aCrossRefGoogle Scholar
  105. Lomas C, Tippett P, Mannessier L. Abolition of the Dvc subcategory. Transfusion 33 6: 535, 1993bCrossRefGoogle Scholar
  106. Mallinson G, Anstee DJ, Avent ND, Ridgwell K, Tanner MJA, Daniels GL, Tippett P, Von Dem Borne AEG. Murine monoclonal antibody MB-2Dl0 recognizes Rh-related glycoproteins in the human red cell membrane. Transfusion 30 (3): 222–225, 1990PubMedCrossRefGoogle Scholar
  107. Mallinson G, Martin PG, Anstee DJ, Tanner MJA, Merry AH, Tills D, Sonneborn HH. Identification and partial characterization of the human erythrocyte membrane component(s) that express the antigens of the LW blood-group system. Biochem J 234: 649–652, 1986PubMedGoogle Scholar
  108. Marsh WL, Chaganti RSK, Gardner FG, Mayer K, Nowell PC, German J. Mapping human autosomes: evidence supporting assignment of Rhesus to the short arm of chromosome n°l. Science 184: 966–968, 1974CrossRefGoogle Scholar
  109. Martel-Shenk S, Agree P. Mammalian red cell membrane Rh polypeptides are selectively pal- mitoylated subunits of a macromolecular complex. J Biol Chem 267: 5569–5574, 1992Google Scholar
  110. Masouredis SP. Reaction of I-131 trace labeled human anti-Rho(D) with red cells. J Clin Invest 38: 279–290, 1959PubMedCrossRefGoogle Scholar
  111. Masouredis SP, Dupuy ME, Elliot M. Distribution of the Rh (D) antigen in the red cells of non-human primates. J Immunol 98: 8–16, 1967PubMedGoogle Scholar
  112. Moor-Jankowski J, Wiener AS. Red cells of primates. In: Fiennes RNTW (ed) Pathology of simian primates. Part I: general pathology. Karger, Basel, pp 270–317, 1972Google Scholar
  113. Moor-Jankowski J, Wiener AS, Socha WW, Gordon EB, Kaczera Z. Blood group homologues in orang-utans and gorillas of the human Rh-Hr and chimpanzee C-E-F systems. Folia Primatol (Basel) 19: 360–367, 1973CrossRefGoogle Scholar
  114. Moore S, Green C. The identification of specific Rhesus polypeptide blood group ABH active glycoprotein complexes in the human red cell membrane. Biochem J 244: 735–741, 1987PubMedGoogle Scholar
  115. Moore S, Woodrow CF, McClelland DBL. Isolation of membrane components associated with human red cell antigens Rho(D) (c) (E) and Fya. Nature 295: 529–531, 1982PubMedCrossRefGoogle Scholar
  116. Morton JA, Pickles M. Use of trypsin in the detection of incomplete anti-Rh antibodies. Nature 158: 880, 1947Google Scholar
  117. Mourant AE. A new rhesus antibody. Nature 155: 542, 1945CrossRefGoogle Scholar
  118. Mourant AE, Kopec ADA, Domaniewska-Sobczak K. The distribution of the human blood groups and other polymorphisms, 2nd edn. Oxford University Press, Oxford, 1976Google Scholar
  119. Mouro I, Colin Y, Chérif-Zahar B, Cartron JP, Le Van Kim C. Molecular genetic basis of the human rhesus blood group system. Nature Genet 5: 62–65, 1993PubMedCrossRefGoogle Scholar
  120. Mouro I, Le Van Kim C, Chérif-Zahar B, Salvignol I, Blancher A, Cartron J-P, Colin Y. Molecular characterization of the Rh-like locus and gene transcripts from the rhesus monkey (Macaca mulatta). J Mol Evol 38: 169–176, 1994aCrossRefGoogle Scholar
  121. Mouro I, Le Van Kim C, Rouillac C, Van Rhenen DJ, Le Pennec PY, Cartron J-P, Colin Y. Rearrangements of the blood group RhD gene associated with the Dvi category phenotype. Blood 83: 1129–1135, 1994bGoogle Scholar
  122. Mouro I, Colin Y, Petti Sistonen, Le Pennec PY, Cartron JP, Le Van Kim C. Molecular basis of the RhCw (Rh8) and RhCx (Rh9) blood group specificities. Blood 83: 1196–1201, 1995Google Scholar
  123. Mouro I, Colin Y, Gane P, Collec E, Zelinski T, Cartron JP. Le Van Kim C. Molecular analysis of blood group Rh transcripts from a rGr variant. Br J Haematol 93: 472–474, 1996PubMedCrossRefGoogle Scholar
  124. Nash R, Shojania AM. Hematological aspect of Rh deficiency syndrome: a case report and review of the literature. Am J Hematol 24: 267–275, 1987PubMedCrossRefGoogle Scholar
  125. Owens NA, Hui HL, Green FA. The binding characteristics of anti-Rho(D)-positive human and chimpanzee erythrocytes measured with 14C protein A. J Immunol 129 (4): 1471–1473, 1982PubMedGoogle Scholar
  126. Race RR. An incomplete antibody in human serum. Nature 153: 171, 1944CrossRefGoogle Scholar
  127. Race RR. The Rh genotypes and Fisher’s theory. Blood 3 [Suppl 21: 27–42, 1948Google Scholar
  128. Race RR, Sanger R. Blood groups in man, 6th edn. Blackwell, Oxford, 1975Google Scholar
  129. Race RR, Taylor GL, Ikin EW, Prior AM. The inheritance of the allelomorphs of the Rh gene in fifty-six families. Ann Eugen Lond 12: 206–210, 1944Google Scholar
  130. Race RR, Sanger R, Selwyn JG. A possible deletion in a human Rh chromosome: a serological and genetical study. Br J Exp Pathol 32: 124–135, 1951PubMedGoogle Scholar
  131. Renton PH, Stratton F. Rhesus type Di’. Ann Eugen Lond 15: 189–209, 1950Google Scholar
  132. Ridgwell K, Roberts SJ, Tanner MJA, Anstee DJ. Absence of two membrane proteins containing extracellular thiol groups in Rh,,,,1i human erythrocytes. Biochem J 213: 267, 1983PubMedGoogle Scholar
  133. Ridgwell K, Tanner MJA, Anstee DJ. The Rhesus (D) polypeptide is linked to the human erythrocyte cytoskeleton. FEBS Lett 174: 7, 1984PubMedCrossRefGoogle Scholar
  134. Ridgwell K, Spurr NK, Laguda B, MacGeoch C, Avent ND, Tanner MJA. Isolation of cDNA clones for a 50 kDa erythrocyte membrane glycoprotein of the human erythrocyte membrane associated with Rh (Rhesus)-blood-group-antigen expression. Biochem J 287: 223–228, 1992PubMedGoogle Scholar
  135. Ridgwell K, Eyers SAC, Mawby WJ, Anstee DJ, Tanner MJA. Study of the glycoprotein associated with Rh(Rhesus) blood group antigen expression in the human red blood cell membrane. J Biol Chem 269 (2): 6410–6416, 1994PubMedGoogle Scholar
  136. Rosenfield RE, Allen FH, Swisher SN, Kochwa S. A review of Rh serology and presentation of a new terminology. Transfusion Phild 2: 287–312, 1962CrossRefGoogle Scholar
  137. Rosenfield RE, Allen FH, Rubinstein P. Genetic model for the Rh blood-group system. Proc Natl Acad Sci USA 70 (5): 1303–1307, 1973PubMedCrossRefGoogle Scholar
  138. Roubinet F, Blancher A, Socha WW, Ruffié J. Quantitative study of chimpanzee and gorilla counterparts of the human D antigen. J Med Primatol 22: 29–35, 1993PubMedGoogle Scholar
  139. Rouger P, Edelman L. Murine monoclonal antibodies associated with Rh17 Rh29 and Rh46 antigens. Transfusion 28: 52–55, 1988PubMedCrossRefGoogle Scholar
  140. Rouger P, Goossens D. Human monoclonal antibodies against human red blood cells. In: Borrebaeck C, Larrick J (eds) Therapeutic monoclonal antibodies. Stockton, Basingstoke, pp 263–286, 1990Google Scholar
  141. Rouillac C, Colin Y, Hughes-Jones NC, Beolet M, D’Ambrosio AM, Cartron J-P, Le Van Kim C. Transcript analysis of D category phenotypes predicts hybrid Rh D-CE-D proteins associated with alteration of D epitopes. Blood 85 (10): 2937–2944, 1995aGoogle Scholar
  142. Rouillac C, Le Van Kim C, Beolet M, Cartron J-P, Colin Y. LeuiioPro substitution in the RhD polypeptide is responsible for the Dvn category blood group phenotype. Am J Hematol 49: 87–88, 1995bCrossRefGoogle Scholar
  143. Rouillac C, Le Van Kim C, Blancher A, Roubinet F, Cartron J-P, Colin Y. Lack of G blood group antigen in Dim’ erythrocytes is associated with segmental DNA exchange between RH genes. Br J Haematol 89: 424–426, 1995cCrossRefGoogle Scholar
  144. Rouillac C, Le Van Kim C, Blancher A, Roubinet F, Cartron J-P, Colin Y. Lack of G blood group antigen in Dim’ erythrocytes is associated with segmental DNA exchange between RH genes. Br J Haematol 89: 424–426, 1995cCrossRefGoogle Scholar
  145. Saboori AM, Smith BL, Agre P. Polymorphism in the Mr 32,000 Rh protein purified from Rh(D) positive and negative erythrocytes. Proc Natl Acad Sci USA 85: 4042, 1988PubMedCrossRefGoogle Scholar
  146. Saboori A, Denker BM, Agre P. Isolation of proteins related to the Rh polypeptides from non-human erythrocytes. J Clin Invest 83: 187–191, 1989PubMedCrossRefGoogle Scholar
  147. Sacks MS, Wiener AS, Jahn EF, Spurling CL, Unger LJ. Isosensitization to a new blood fac-tor Rh° with special reference to its clinical importance. Ann Int Med 51: 740, 1959PubMedCrossRefGoogle Scholar
  148. Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA. Pri-mer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239: 487–491, 1988PubMedCrossRefGoogle Scholar
  149. Saitou N, Nei M. The neighbor joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425, 1987PubMedGoogle Scholar
  150. Salmon C, Gerbai A, Liberge G, Sy B, Tippett P, Sanger R. Le complexe génique DIV (C)-. Rev Fr Transfus 12: 239–247 1969PubMedCrossRefGoogle Scholar
  151. Salvignol I. Les gènes Rh-like chez les primates nonhumains. Doctoral thesis, Université Paul Sabatier Toulouse, 1993aGoogle Scholar
  152. Salvignol I, Blancher A, Calvas P, Socha WW, Colin Y, Cartron J-P, Ruffié J. Relationship between chimpanzee Rh-like genes and the R-C-E-F blood group system. J Med Primatol 22: 19–28, 1993bGoogle Scholar
  153. Salvignol I, Blancher A, Calvas P, Clayton J, Socha WW, Colin Y, Ruffié J. Molecular genetics of chimpanzee Rh-related genes: their relationship with R-C-E-F blood group system the chimpanzee counterpart of human RH system. Biochem Genet 32: 201–221, 1994PubMedCrossRefGoogle Scholar
  154. Salvignol I, Calvas P, Socha WW, Colin Y, Le Van Kim C, Bailly P, Ruffié J, Cartron J-P, Blancher A. Structural analysis of the RH-like blood group gene products in nonhuman primates. Immunogenetics 41: 271–281, 1995PubMedCrossRefGoogle Scholar
  155. Schmidt PJ. Rh-Hr: Alexander Wiener’s last campaign. Transfusion 34 (2): 180–182, 1994PubMedCrossRefGoogle Scholar
  156. Schwartz MA, Brown E, Fazeli B. A 50 kDa integrin-associated protein is required for integ-rin-regulated calcium entry in endothelail cells. J Biol Chem 268: 19931–19934, 1993PubMedGoogle Scholar
  157. Shaw MA. Monoclonal anti-LWab and anti-D reagents recognize a number of different epi-topes. J Immunogenet 13: 377–386, 1986PubMedCrossRefGoogle Scholar
  158. Shinitzky M, Souroujon M. Passive modulation of blood group antigens. Proc Natl Acad Sci USA 76: 4438, 1979PubMedCrossRefGoogle Scholar
  159. Sinor LT, Brown PJ, Evans JP, Plapp FV. The Rh antigen specificity of erythrocyte proteolipid. Transfusion 24 (2): 179–180, 1984PubMedCrossRefGoogle Scholar
  160. Sistonen P. Linkage of the LW blood group locus with the complement C3 and Lutheran blood group loci. Ann Hum Genet 48: 239, 1984PubMedCrossRefGoogle Scholar
  161. Smythe JS, Avent ND, Judson PA, Parsons SF, Martin P, Anstee DJ. Expression of the RHD and RHCE gene products in K562 establishes the molecular basis of the RH blood group antigens. Blood: 86: 473a (abstr 1878), 1995 )Google Scholar
  162. Smythe JS, Avent ND, Judson PA, Parsons SF, Martin PG, Anstee DJ. Expression of RHD and RHCE gene products using retroviral transduction of K562 cells establishes the molecular basis of Rh blood group antigens. Blood 87 (7): 2968–2973, 1996PubMedGoogle Scholar
  163. Socha WW. Serological differentiation of human populations. Polish State Medical Publishers, Warsaw, 1966Google Scholar
  164. Socha WW. Blood groups of pygmy and common chimpanzees: a comparative study. In: Susman RL (ed) The pygmy chimpanzee: evolutionary morphology and behavior. Plenum, New York, pp 13–41, 1984CrossRefGoogle Scholar
  165. Socha WW. Blood groups of nonhuman primates. In: Swindler DR, Erwin J (eds) Comparative primate biology systematics evolution and anatomy, vol 1. Liss, New York, 1986Google Scholar
  166. Socha WW. Blood groups of apes and monkeys. In: Jones TC, Mohr U, Hunt RD (eds) Non-human primates II. Springer, Berlin Heidelberg New York, pp 208–215, 1993aCrossRefGoogle Scholar
  167. Socha WW. Erythroblastosis fetalis. In: Jones TC, Mohr U, Hunt RD (eds) Nonhuman pri-mates II. Springer, Berlin Heidelberg New York, pp 215–220, 1993bCrossRefGoogle Scholar
  168. Socha WW, Moor-Jankowski J. Rh antibodies produced by an isoimmunized chimpanzee: reciprocal relationship between chimpanzee simian-type isoimmune sera and human anti-Rho reagents. Int Arch Allergy Appl Immunol 56: 30–38, 1978PubMedCrossRefGoogle Scholar
  169. Socha WW, Moor-Jankowski J. Blood groups of anthropoid apes and their relationship to human blood groups. J Hum Evol 8: 453–465, 1979CrossRefGoogle Scholar
  170. Socha WW, Moor-Jankowski J. Chimpanzee R-C-E-F blood group system: a counterpart of the Rh-Hr blood groups. Folia Primatol (Basel) 33: 172–188, 1980CrossRefGoogle Scholar
  171. Socha WW, Ruffié J. Blood groups in primates. Theory practice evolutionary meaning. Liss, New York, pp 75–90 (Monographs in primatology, vol 3, 7 ), 1983Google Scholar
  172. Socha WW, Ruffié J. Monoclonal antibodies directed against human red cell antigens in tests with the red cells of non human primates. Rev Fr Transfus Hemobiol 33: 39–48, 1990PubMedGoogle Scholar
  173. Socha WW, van Foreest AW. Erythroblastosis fetalis in a family of captive orangutans. Am J Primatol 3: 326 (abstract), 1981CrossRefGoogle Scholar
  174. Socha WW, Wiener AS, Moor-Jankowski J, Mortelmans J. Blood groups of mountain gorillas (Gorilla gorilla beringei). J Med Primatol 2: 364–369, 1973PubMedGoogle Scholar
  175. Socha WW, Rouger P, Ruffié J, Moor-Jankowski J. Complexity of the Rh antigen demonstrated by comparative tests using antisera of human and primate origins. Exp Clin Immunogenet 6: 150–155, 1989PubMedGoogle Scholar
  176. Socha WW, Blancher A, Ruffié J. Comparative study of human monoclonal anti-D antibodies of IgG and IgM classes in tests with red cells of nonhuman primates. Rev Fr Transfus Hemobiol 36: 485–497, 1993PubMedGoogle Scholar
  177. Sonneborn HH, Uthemann H, Tills D, Lomast CG, Shawt MA, Tippett P. Monoclonal anti-LW ab. Biotest Bull 2: 145–149, 1984Google Scholar
  178. Sonneborn HH, Ernst M, Tills D, Lomas CG, Gorick BD, Hughes-Jones NC. Comparison of the reactions of the Rh-related murine monoclonal antibodies BS58 and R6A. Vox Sang 58: 219–223, 1990PubMedCrossRefGoogle Scholar
  179. Steinberg AG. Evidence for a mutation or crossing-over at the Rh locus. Vox Sang 10: 721724, 1965Google Scholar
  180. Stratton F. A new Rh allelomorph. Nature 158: 25, 1946PubMedCrossRefGoogle Scholar
  181. Suyama K, Goldstein J. Antibody produced against isolated Rh(D) polypeptide reacts with other Rh-related antigens. Blood 72: 1622–1626, 1988PubMedGoogle Scholar
  182. Suyama K, Goldstein J. Enzymatic evidence for differences in the placement of Rh antigens within the red cell membrane. Blood 75: 255, 1990PubMedGoogle Scholar
  183. Suyama K, Goldstein J, Aebersold R, Kent S. Regarding the size of Rh proteins. Blood 77: 411, 1991PubMedGoogle Scholar
  184. Suyama K, Roy S, Lunn R, Goldstein J. Expression of the 32-kd polypeptide of the Rh antigen. Blood 82: 1006–1009, 1993PubMedGoogle Scholar
  185. Suyama K, Lunn R, Haller S, Goldstein J. Rh(D) antigen expression and isolation of a new Rh(D) cDNA isofrom in human erythroleukemic K562 cells. Blood 84: 1975–1977, 1994PubMedGoogle Scholar
  186. Tate H, Cunningham C, McDade MG, Tippett PA, Sanger R. An Rh gene complex Dc-. Vox Sang 5: 398–402, 1960PubMedCrossRefGoogle Scholar
  187. Tippett P. A speculative model for the Rh blood groups. Ann Hum Genet 50: 241–247, 1986PubMedCrossRefGoogle Scholar
  188. Tippett P. Rh blood group system: the D antigen and high-and low-frequency Rh antigens. In: Vengelen-Tyler, Pierce (eds) Blood group systems: Rh. American Association of Blood Banks, Arlington, 1987Google Scholar
  189. Tippett P. Co-ordinator’s report on group 3: monoclonal Rh antibodies: serological and biological studies. Rev Fr Transfus Immunohematol 31 (2): 249–258, 1988PubMedCrossRefGoogle Scholar
  190. Tippett P. Serologically defined Rh determinants. J Immunogenet 17: 247–257, 1990PubMedCrossRefGoogle Scholar
  191. Tippett P, Moore S. Monoclonal antibodies against Rh and Rh-related antigens. J. Immu-nogenetics 17: 309–319, 1990CrossRefGoogle Scholar
  192. Tippett P, Lomas-Francis C, Wallace M. The Rh antigen D: partial D antigens and associated low incidence antigens. Vox Sang 70: 123–131, 1996PubMedCrossRefGoogle Scholar
  193. Umenishi F, Kajii E, Ikemoto S. Molecular analysis of Rh polypeptides in a family with RhD-positive and RhD-negative phenotypes. Biochem J 299: 207–211, 1994PubMedGoogle Scholar
  194. Unger LJ, Wiener AS. A “new” antibody anti-RhC resulting from isosensitization by pregnancy with special reference to the heredity of a new Rh-Hr agglutinogen RhC. J Lab Clin Med 32: 499, 1959aGoogle Scholar
  195. Unger LJ, Wiener AS, Wiener L. A new antibody (anti-RhB) in an Rh-positive patient resulting from blood transfusion. JAMA 170: 1380, 1959bCrossRefGoogle Scholar
  196. Victoria EJ, Branks MJ, Masouredis SP. Rh antigen immunoreactivity after histidine modification. Mol Immunol 23 (10): 1039–1044, 1986PubMedCrossRefGoogle Scholar
  197. Von Dem Borne AEGK, Bos MJE, Lomas C, Tippett P, Bloy C, Hermand P, Cartron J-P, Admiraal LG, Van de Graaf J, Overbeeke MAM. Murine monoclonal antibodies against a unique determinant of erythrocytes related to Rh and U antigens: expression on normal and malignant erythrocyte precursors and Rhn 11 red cells. Br J Haematol 75: 254–261, 1990CrossRefGoogle Scholar
  198. Westhoff CM. Investigation of the Rh blood group system in humans and non-human primates. The University of Nebraska, Lincoln, 1993Google Scholar
  199. Westhoff CM, Wylie DE. Investigation of the human Rh blood groups system in nonhuman primates and other species with serologic and southern blot analysis. J Mol Evol 39: 87–92, 1994aCrossRefGoogle Scholar
  200. Westhoff CM, Wylie DE. Identification of a RhD -specific mRNA from K562 cell. Blood 83: 3098, 1994bGoogle Scholar
  201. Westhoff CM, Wylie DE. Investigation of the Rh locus in gorillas and chimpanzees. J Mol Evol 43: 658–668, 1996CrossRefGoogle Scholar
  202. Wiener AS. Genetic theory of the Rh blood types. Proc Soc Exp Biol NY 54: 316–319, 1943Google Scholar
  203. Wiener AS. A new test (blocking test) for Rh sensitization. Proc Soc Exp Biol NY 56: 173–176, 1944Google Scholar
  204. Wiener AS. Blood group nomenclature. Science 128: 849–852, 1958PubMedCrossRefGoogle Scholar
  205. Wiener AS, Gordon EB. The blood groups of chimpanzees: the Rh-Hr (CDE/cde) blood types. Amer J Phys Anthropol 191: 35–43, 1961CrossRefGoogle Scholar
  206. Wiener AS, Peters HR. Hemolytic reactions following transfusions of blood of the homologous group with three cases in which the same agglutinogen was responsible. Ann Int Med 13: 2306–2322, 1940CrossRefGoogle Scholar
  207. Wiener AS, Socha WW. Macro and micro differences in blood group antigens and antibodies. Int. Arch. Allergy 44: 547–561, 1974CrossRefGoogle Scholar
  208. Wiener AS, Unger LJ. Blood factors RhA RhB RhC and RhD. Transfusion 2 (4): 230–233, 1962PubMedCrossRefGoogle Scholar
  209. Wiener AS, Gavan JA, Gordon EB. Blood group factors in anthropoid apes and monkeys. 11. Further studies on the Rh-Hr factors. Amer J Phys Anthropol 11: 39–45, 1953CrossRefGoogle Scholar
  210. Wiener AS, Geiger J, Gordon EB. Mosaic nature of the Rho blood factor. Exp Med Surg 15: 75, 1957PubMedGoogle Scholar
  211. Wiener AS, Moor-Jankowski J, Gordon EB. Blood groups of apes and monkeys IV. The Rh-Hr blood types of anthropoid apes. Amer J Hum Genet 16 (2): 246–253, 1964PubMedGoogle Scholar
  212. Wiener AS, Moor-Jankowski J, Riopelle AJ, Shell WE Simian blood groups. Another blood group system C-E-F in chimpanzee. Transfusion 5: 508–515, 1965PubMedCrossRefGoogle Scholar
  213. Wiener AS, Moor-Jankowski J, Gordon EB, Kratochvil CL. Individual differences in chimpanzee blood demonstrable with absorbed human anti-Rho sera. Proc Natl Acad Sci USA 56: 458–462, 1966PubMedCrossRefGoogle Scholar
  214. Wiener AS, Wisecup W, Moor-Jankowski J. A new simian-type blood factor Lc associated with the C-E-F blood group system of chimpanzee. Transfusion 7: 351–354, 1967PubMedCrossRefGoogle Scholar
  215. Wiener AS, Moor-Jankowski J, Gordon EB. Blood groups of gorillas. Kriminalistik Foren-sische Wissenschaft 6: 31–43, 1971Google Scholar
  216. Wiener AS, Kratochvil CH, Moor-Jankowski J. Implications of studies in chimpanzees for the serology of the human Rh-Hr blood types. In: Golsmidt EI, Moor-Jankowski J (eds) Primates in medicine, vol 1. Karger, Basel pp 95–99, 1972Google Scholar
  217. Wiener AS, Socha WW, Arons EB, Mortelmans G, Moor-Jankowski J. Blood group of gorillas: further observations. J Med Primatol (Basel) 5: 317–320, 1976Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • A. Blancher
  • W. W. Socha

There are no affiliations available

Personalised recommendations