Advertisement

Morus Species (Mulberry): In Vitro Culture, Micropropagation, and the Formation of Mulberrofuran, Kuwanol, and Other Secondary Metabolites

  • Y. P. S. Bajaj
  • J. Ivanička
  • S. Ueda
Part of the Biotechnology in Agriculture and Forestry book series (AGRICULTURE, volume 41)

Abstract

The genus Morus (family Moraceae) covers the numerous mulberry species grown and cultured in various continents, mainly in Asia and Europe. Koidzumi (1923) described 37 species, of which some common ones are given in Table 1. The typical representative of diploid species (2n=28) is Morus alba (white mulberry), which has long been cultivated in China, Korea, and Japan for feeding silkworm (Bombyx mori L.). Cultivation of mulberry trees is especially popular in the Jiangsu, Zhejiang, Fujian, and Sichuan districts in China (Hotta 1951; Hotta et al. 1989). Another useful species, Morus nigra (black mulberry), is a polyploid with 308 or 330 chromosomes (Agaev 1984).

Keywords

Callus Tissue Synthetic Seed Root Bark Plant Cell Tissue Organ Cult Mulberry Leave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agaev JM (1984) The chromosome number of the 22-ploid mulberry species Morus nigra and the origin of the genus Morus. Citologia 26:1054–1059 (in Russion)Google Scholar
  2. Asano N, Tomioka E, Kizu H, Matsui K (1994a) Sugars with nitrogen in the ring iolated from the leaves of Morus bombycis. Carbohydr Res 253:235–245PubMedCrossRefGoogle Scholar
  3. Asano N, Oseki K, Tomioka E, Kizu H, Matsui K (1994b) N-Containing sugars from Morus alba and their glycosidase inhibitory activities. Carbohydr Res 259:243–255PubMedCrossRefGoogle Scholar
  4. Ayabe S, Furuya T (1982) Studies on plant tissue cultures. Part 36. Biosynthesis of a retrochalcone, echinatin, and other flavonoids in the cultured cells of Glycyrrhiza echinata. A new route to a chalcone with transposed A- and B-rings. J Chem Soc Perkin Trans I 2725–2734Google Scholar
  5. Ayabe S, Udagawa A, Furuya T (1988) NAD(P)H-Dependent 6’-deoxychalcone synthase activity in Glycyrrhiza echinata cells induced by yeast extract. Arch Biochem Biophys 261:458–462PubMedCrossRefGoogle Scholar
  6. Bajaj YPS (1992) Biotechnology in agriculture and forestry, vol 18. High-tech and micro-propagation II. Springer, Berlin Heidelberg New YorkGoogle Scholar
  7. Bajaj YPS (1996) Biotechnology in agriculture and forestry, vol 35. Trees IV. Springer, Berlin Heidelberg New YorkGoogle Scholar
  8. Bapat VA, Mhatre M, Rao PS (1987) Propagation of Morus indica L. (mulberry) by encapsulated shoot buds. Plant Cell Rep 6:393–395CrossRefGoogle Scholar
  9. Bolkhovskkikh Z, Grif V, Matveyeva T, Zakharyeva O (eds) (1969) Khromosomnye chisla tsvetkovykh rasteniy. Leningrad, 926 ppGoogle Scholar
  10. Chang JS (1985) Tissue culture of winter shoots of Baigeln mulberry (Morus lhou Koidz.). Shanxi Agric Sci 3:17–18Google Scholar
  11. Cholbi MR, Paya M, Alcaraz OI (1991) Inhibitory effects of phenolic compounds on CCl4-induced microsomal lipid peroxidation. Experientia 47:195–199PubMedCrossRefGoogle Scholar
  12. Darlington CD, Wylie AP (eds) (1961) Chromosome atlas of flowering plants 2nd edn. George Allen and Unwin, London, pp 184–185Google Scholar
  13. Deshpande VH, Parthasarathy PG, Venkataraman K (1968) Four analogues of artocarpin and cycloartocarpin from Morus alba. Tetrahedron Lett 1715–1719Google Scholar
  14. Enomoto S (1987) Preservation of genetic resources of mulberry by means of tissue culture. J Agric Res Quat 21:205–210Google Scholar
  15. Evans SV, Fellows LE, Shing TKM, Fleet GWJ (1985) Glycosidase inhibition by plant alkaloids which are structural analogues of monosaccharides. Phytochemistry 24:1953–1955CrossRefGoogle Scholar
  16. Fukai T, Hano Y, Hirakura K, Nomura T, Uzawa J, Fukushima K (1985) Structures of two natural hypotensive Diels-Alder type adducts, mulberrofurans F and G, from the cultivated mulberry tree, (Morus lhou Koidz.). Chem Pharm Bull 33:3195–3204PubMedCrossRefGoogle Scholar
  17. Haley TJ, Bassin M (1951) Isolation, purification and derivatives of plant pigments related to rutin. J Am Pharm Assoc 40:111–112Google Scholar
  18. Hano Y, Fukai T, Nomura T, Uzawa J, Fukushima K (1984) Structure of mulberrofuran I, a novel 2-arylbenzofuran derivative from the cultivated mulberry tree (Morus bombycis) Koidz. Chem Pharm Bull 32:1260–1263CrossRefGoogle Scholar
  19. Hano Y, Itoh M, Nomura T (1985) Structures of kuwanols A and B, two novel stilbene derivatives from the cultivated mulberry tree (Morus bombycis Koidz.). Heterocycles 23:819–824CrossRefGoogle Scholar
  20. Hano Y, Nomura T, Ueda S (1989a) Two new Diels-Alder type adducts, mulberrofuran T and kuwanol E, from callus tissues of Morus alba L. Heterocycles 29:2035–2041CrossRefGoogle Scholar
  21. Hano Y, Nomura T, Ueda S (1989b) Biosynthesis of chalcomoracin and kuwanon J, the Diels-Alder type adducts, in Morus alba L. cell cultures. Chem Pharm Bull 37:554–556CrossRefGoogle Scholar
  22. Hano Y, Suzuki S, Nomura T, Ueda S (1989c) Two new phenolic compounds, kuwanols C and D, from the root bark of a mulberry tree redifferentiated from the callus tissues. Heterocycles 29:807–813CrossRefGoogle Scholar
  23. Hano Y, Nomura T, Ueda S (1990) Biosynthesis of optically active Diels-Alder type adducts revealed by an aberrant metabolism of O-methylated precursors in Morus alba cell cultures. J Chem Soc Chem Commun 610–613Google Scholar
  24. Hano Y, Aida M, Nomura T, Ueda S (1992a) A novel way of determining the structure of artonin I, an optically active Diels-Alder type adduct, with the aid of Morus alba cell cultures. J Chem Soc Chem Commun 1177–1178Google Scholar
  25. Hano Y, Ayukawa A, Nomura T, Ueda S (1992b) Dynamic participation of primary metabolites in the biosynthesis of chalcomoracin and β-sitosterol in Morus alba cell cultures. Naturwissenschaften 79:180–182CrossRefGoogle Scholar
  26. Hano Y, Ayukawa A, Nomura T, Ueda S (1994a) A chimeric hemiterpene biosynthesis in Morus alba cell cultures. Naturwissenschaften 81:260–262Google Scholar
  27. Hano Y, Ayukawa A, Nomura T, Ueda S (1994b) Origin of the acetate units composing the hemiterpene moieties of chalcomoracin in Morus alba cell cultures. J Am Chem Soc 116:4189–4193CrossRefGoogle Scholar
  28. Hano Y, Nomura T, Ueda S (1994c) Direct NMR evidence for the equivalent participation of L-phenylalanine and L-tyrosine in the biosynthesis of the intermolecular Diels-Alder type adducts of prenylchalcone and prenylated 2-arylbenzofuran in Morus alba cell cultures. Can J Chem 72:12–14CrossRefGoogle Scholar
  29. Hano Y, Nomura T, Ueda S (1994d) Parallel contribution of L-Phenylalanine and L-tyrosine to the biosynthesis of prenylchalcones in Morus aba cell cultures. Naurwis-senschaften 81:507–509Google Scholar
  30. Harborne JB (1994) In: Buckingham J (ed) Dictionary of natural products vol 4. Chapman & Hall, New York, pp 4525–4526Google Scholar
  31. Herbert RB, Knaggs AR (1992) Biosynthesis of the antibiotic obafluorin from d-[U-13C]glucose and p-aminophenylalanine in Pseudomonas fluorescens. J Chem Soc Perkin Trans I:103–113Google Scholar
  32. Hill AF (1937) Economic botany, a text book of useful plants and plant products. McGraw-Hill, New York, pp 426–427Google Scholar
  33. Honda T (1972) Technical problems on mulberry cutting in Japan. Jpn Agric Res Q 6:235–240Google Scholar
  34. Hossain M, Rahman M, Joarder OI (1990) Propagation of mulberry from axillary bud culture. Rajshahi Univ Stud (B) 18:73–81Google Scholar
  35. Hotta M, Ogata K, Nitta A, Hosikawa K, Yanagi M, Yamazaki K (1989) Useful plants of the world. Heibonsha, Tokyo, 693 ppGoogle Scholar
  36. Hotta T (1951) Nogakutaikei Sakumotsu Bumon Kuwa Hen (Systematic Agriculture, Crops, Mulberry). Yohkendo, Tokyo, 116 ppGoogle Scholar
  37. Ikuta J, Fukai T, Nomura T, Ueda S (1986) Constituents of Morus alba L. cell cultures (1). Structures of four new natural Diels-Alder type adducts, kuwanon J, Q, R, and V. Chem Pharm Bull 34:2471–2478CrossRefGoogle Scholar
  38. Islam R, Zaman A, Joarder OI, Barman AC (1993) In vitro propagation as an aid for cloning of Morus laevigata Wall. Plant Cell Tissue Organ Cult 33:339–341CrossRefGoogle Scholar
  39. Ito T, Horie Y, Watanabe K, Takamiya K, Furuyama M, Miyabayashi M, Yamamoto K (1974) Rearing of larvvae of the silkworm, Bombix mori, entirely on semi-synthetic diets. Nippon Nogeikagaku Kaishi (J Agric Chem Soc Jpn) 48:403–407CrossRefGoogle Scholar
  40. Ito T, Mizuta Y, Takamiya K, Ueda S, Kimura R, Higuchi T, Takahashi S (1975) Growth, development, and cocoon production in artificial-diet-rearing of the silkworm, Bombix mori, with or without application of a synthetic juvenile hormone analog. Nippon Nogeikagaku Kaishi (J Agric Chem Soc Jpn) 49:39–48CrossRefGoogle Scholar
  41. Ivanička J (1987) In vitro micropropagation of mulberry, Morus nigra L. Sci Hortic 32:33–40CrossRefGoogle Scholar
  42. Jain AK, Datta RK (1992) Shoot organogenesis and plant regeneration in mulberry (Morus bombycis Koidz.); factors influencing morphogenetic potential in callus cultures. Plant Cell Tissue Organ Cult 29:43–50CrossRefGoogle Scholar
  43. Katsumata F (1979) Chromosomes of Morus nigra L. from Jawa and hybridization activity between this species and some mulberry species in Japan. J Seric Sci Jpn 48:418–422Google Scholar
  44. Kim HR, Patel KR, Thorpe TA (1985) Regeneration of mulberry plantlets through tissue culture. Bot Gaz 146:335–340CrossRefGoogle Scholar
  45. Koidzumi G (1923) Revision of the genus Morus. Bot Mag Tokyo 31:35–41Google Scholar
  46. Kulkarni DD, Ghugale DD, Narasimhan R (1970) Chemical investigation of plant tissues grown in vitro: Isolation of β-sitosterol from Morus alba (mulberry) callus tissue. Indian J Exp Biol 8:347PubMedGoogle Scholar
  47. Machii H (1992) In vitro growth of encapsulated adventitious buds in mulberry, Morus alba L. Jpn J Breed 42:553–555Google Scholar
  48. Machii H, Yamanouchi H (1993) Growth of mulberry synthetic seeds on vermiculite, sand and soil media. J Seric Sci Jpn 62:85–87Google Scholar
  49. Mhatre M, Bapat VA, Rao PS (1985) Regeneration of plants from the culture of leaves and axillary buds in mulberry (Morus indica L.). Plant Cell Rep 4:78–80CrossRefGoogle Scholar
  50. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays in tobacoo tissue cultures. Physiol Plant 15:473–497CrossRefGoogle Scholar
  51. Naito K (1968a) Studies on the micro constituent in mulberry leaves. Part VII. Isolation of rutin and quercetin from mulberry leaves. Nippon Nogei Kagaku Kaishi 42:423–425CrossRefGoogle Scholar
  52. Naito K (1968b) Studies on the micro constituent in mulberry leaves. Part VIII. Isolation of quercetin-glycoside from mulberry leaves. Nippon Nogei Kagaku Kaishi 42:450–453CrossRefGoogle Scholar
  53. Niino T (1995) Cryopreservation of germplasm of mulberry (Morus species). In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 32. Cryopreservation of plant germplasm I. Springer, Berlin Heidelberg New York, pp 102–113Google Scholar
  54. Niino T, Sakai A (1992) Cryopreservation of alginatecoated in vitro-grown shoot tips of apple, pear and mulberry. Plant Sci 87:199–206CrossRefGoogle Scholar
  55. Nomura T (1988) Phenolic compounds of the mulberry tree and related plants. Fortschr Chem Org Naturst 53:87–201PubMedCrossRefGoogle Scholar
  56. Nomura T, Fukai T (1980) Kuwanon G, a new flavone derivative from the root bark of the cultivated mulberry tree (Morus alba L.). Chem Pharm Bull 28:2548–2552CrossRefGoogle Scholar
  57. Ohyama K (1970) Tissue culture in mulberry tree. Jpn Agric Res Q 5:30–34Google Scholar
  58. Ohyama K, Kawakita H (1975) In vitro culture of shoot tips infected with mulberry dwarf. J Seric Sci Jpn 44:413–414Google Scholar
  59. Ohyama K, Oka S (1976) Regeneration of whole plants from isolated shoot tips of mulberry tree. J Seric Sci Jpn 45:115–120Google Scholar
  60. Oka S, Ohyama K (1974) Studies on in vitro culture of excised buds in mulberry tree I. Effects of growth substances on the development of shoots and organ formation from winter buds. J Seric Sci Jpn 43:230–235Google Scholar
  61. Oka S, Ohyama K (1981) In vitro initiation of adventitious buds and its modification by high concentration of benzyladenine in leaf tissues of mulberry (Morus alba). Can J Bot 59:68–74CrossRefGoogle Scholar
  62. Oka S, Ohyama K (1986) Mulberry (Morus alba L.) In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 1. Trees I. Springer, Berlin Heidelberg New York, pp 384–392Google Scholar
  63. Omura S (1973) Silkworm rearing techniques in the tropics. Text Book Ser 35, OTCA, TokyoGoogle Scholar
  64. Patel GK, Bapat VA, Rao PS (1983) In vitro culture and organ explants of Morus indica: plant regeneration and fruit formation in axillary bud culture. Z Pflanzenphysiol 111:465–468Google Scholar
  65. Pattnaik SK, Sahoo Y, Chand PK (1995) Efficient plant retrieval from alginate-encapsulated vegetative buds of mature mulberry trees. Sci Hortic 61:227–239CrossRefGoogle Scholar
  66. Quoirin M, Lepoivre Ph, Boxus Ph (1977) Un premier bilan de 10 années de recherches sur les cultures de méristèmes et la multiplication in vitro fruitières ligneux. C R Rech 1976–1977. Stn Cuit Fruit Maraich Gembloux, pp 93–117Google Scholar
  67. Sharma KK, Thorpe TA (1990) In vitro propagation of mulberry (Morus alba) through nodal segments. Sci Hortic 42:307–320CrossRefGoogle Scholar
  68. Shibata H, Mikoshiba I, Shimizu S (1974) Isolation of β-tocopherol from the root bark of the mulberry tree. Agric Biol Chem 38:1745–1746CrossRefGoogle Scholar
  69. Snir I (1982) In vitro micropropagation of sweet cherry cultivars. Hort Science 17:192–193Google Scholar
  70. Spada A, Cameroni R, Bernabei MT (1956) The pigments of Morus alba. Gazz Chim Ital 86:46–55Google Scholar
  71. Takasugi M, Nagao S, Ueno S, Masamune T, Shirata A, Takahashi K (1978) Moracin C and D, new phytoalexins from diseased mulberry. Chem Lett 1239–1240Google Scholar
  72. Takasugi M, Nagao S, Masamune T, Shirata A, Takahashi K (1980) Chalcomoracin, a novel Diels-Alder adduct from diseased mulberry. Chem Lett 1573–1576Google Scholar
  73. Ueda S, Nomura T, Fukai T, Matsumoto J (1982) Kuwanon J, a new Diels-Alder adduct and chalcomoracin from callus culture of Moras alba L. Chem Pharm Bull 30:3042–3045CrossRefGoogle Scholar
  74. Ueda S, Matsumoto J, Nomura T (1984) Four new natural Diels-Alder type adducts, mulberrofuran E, kuwanon Q, R, and V from callus culture of Morus alba L. Chem Pharm Bull 32:350–353CrossRefGoogle Scholar
  75. Wang PF, Zheng RL (1992) Inhibition of the autoxidation of linoleic acid by flavonoids in micelles. Chem Phys Lipids 63:37–40PubMedCrossRefGoogle Scholar
  76. Wu TW, Fung KP, Zeng LH, Wu J, Hempel A, Grey AA, Camerman N (1995) Molecular properties and myocardial salvage effects of morin hydrate. Biochem Pharmacol 49:537–543PubMedCrossRefGoogle Scholar
  77. Yadav U, Lal M, Jaiswal VS (1990) Micropropagation of Morus nigra L. from shoot tip and nodal explants of mature trees. Sci Hortic 44:61–67CrossRefGoogle Scholar
  78. Yagi M, Kouno T, Aoyagi Y, Murai H (1976) The structure of moranoline, a piperidine alkaloid from Morus species. Nippon Nogei Kagaku Kaishi 50:571–572CrossRefGoogle Scholar
  79. Yakuwa H, Oka S (1988) Plant regeneration through meristem culture from vegetative buds of mulberry (Morus bombycis Koidz.) stored in liquid nitrogen. Ann Bot 62:79–82Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Y. P. S. Bajaj
    • 1
  • J. Ivanička
    • 2
  • S. Ueda
    • 3
  1. 1.A-137 New Friends ColonyNew DelhiIndia
  2. 2.Centre of Development of HorticulturePrievidzaSlovakia
  3. 3.Faculty of Pharmaceutical SciencesKyoto UniversitySakyo-ku, KyotoSlovakia

Personalised recommendations