Skip to main content

Abstract

Surgical fusion of the spine dates back to 1911, when the procedure was described by Albee [1], who provided mechanical support to vertebrae involved with tuberculosis, and by Hibbs [2], who treated the progression of scoliosis by spinal fusion. Since this time several techniques of fusion have been described and advocated with and without the use of instrumentation. Frequently the success of spinal surgery is dependent upon a solid fusion between selected intervertebral segments. The bony union which takes place is dependent upon several factors related to the host locally and systemically. Many of these factors have been elucidated, providing further information to enhance the rate of spinal fusion. However, there are certainly many facets of arthrodesis which are incompletely understood or not identified, for which further research is required. The rate of nonunion in the spine ranges from 5% to 35% [3, 4]; the improvement of these figures will be by the determination of the biology involved in achieving a successful fusion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albee FH (1911) Transplantation of a portion of the tibia in-to the spine for Pott’s disease. JAMA 57: 885–886

    Article  Google Scholar 

  2. Hibbs RA (1911) An operation for progressive spinal defor-mities. A preliminary report of three cases from the service of the Orthopedic Hospital. NY State J Med 93:1013–1016

    Google Scholar 

  3. DePalma AF, Rothman RH (1968) The nature of pseudoarthrosis. Clin Orthop 59: 113–118

    PubMed  CAS  Google Scholar 

  4. Steinmann JC, Herkowitz HN (1992) Pseudoarthrosis of the spine. Clin Orthop 284: 80–90

    PubMed  Google Scholar 

  5. Hurley LA, Stinchfield FE, Bassett AL, Lyon WH (1959) The role of soft tissues in osteogenesis: an experimental study of canine spine fusions. J Bone Joint Surg 41A: 1243–1254

    Google Scholar 

  6. Craven PL, Urist MR (1971) Osteogenesis by radioisotope labelled cell populations in implants of bone matrix under the influence of ionizing radiation. Clin Orthop 76: 231–243

    Article  PubMed  CAS  Google Scholar 

  7. Bouchard JA, Koka A, Bensusan JS, et al. (1994) Effect of radiation on posterior spinal fusions: a rabbit model. Spine 19: 1836–1841

    Article  PubMed  CAS  Google Scholar 

  8. Joyce ME, Terik RM, Jingushi S, et al. (1990) Role of transforming growth factor-beta in fracture repair. Ann NY Acad Sci 593: 107–123

    Article  PubMed  CAS  Google Scholar 

  9. Mohan S, Baylink DJ (1991) Bone growth factors. Clin Orthop 263: 30–48

    PubMed  Google Scholar 

  10. Canalis E (1985) Effect of growth factors on bone cell replication and differentiation. Clin Orthop 193: 246–263

    PubMed  CAS  Google Scholar 

  11. Kahanovitz N, Arnoczky SP, Hulse D, Shires A (1994) The effect of electromagnetic pulsing on posterior lumbar spinal fusion in dogs. Spine 19: 705–709

    Article  PubMed  CAS  Google Scholar 

  12. Kahanovitz N, Arnoozky SP (1990) The efficacy of direct current electrical stimulation to enhance canine spinal fusions. Clin Orthop 251: 295–299

    PubMed  Google Scholar 

  13. Dwyer AF, Wickham GG (1974) Direct current stimulation in spinal fusions. Med J Aust 1: 73–75

    PubMed  CAS  Google Scholar 

  14. Kane WJ (1988) Direct current electrical bone growth stimulation for spinal fusion. Spine 13: 363–365

    Article  PubMed  CAS  Google Scholar 

  15. Simmons JW (1985) Treatment of failed posterior lumber interbody fusion (PLIF) of the spine with pulsing electromagnetic fields. Clin Othop 193: 127–132

    Google Scholar 

  16. Mooney V (1990) A randomized double blind prospective study of the efficacy of pulsed electromagnetic fields for interbody lumbar fusion. Spine 15: 708–712

    Article  PubMed  CAS  Google Scholar 

  17. Phillips LS, Vassilopoulou-Sellin R (1980) Somatomedins - part I and part II. N Engl J Med 302: 371–446

    Article  PubMed  CAS  Google Scholar 

  18. Misol S, Samaan N, Poneti IV (1971) Growth hormone in delayed fracture union. Clin Orthop 74: 206–208

    PubMed  CAS  Google Scholar 

  19. Schalch OS, Heinrich UE, Draznin B, et al. (1979) Role of the liver in regulating somatomedin activity: hormonal effects on the synthesis and release of insulin-like growth factor and its carrier protein by the isolated perfused rat liver. Endocrinology 104: 1143–1151

    Article  PubMed  CAS  Google Scholar 

  20. Udupa KN, Gupta LP (1965) The effects of growth hormone and thyroxine in the healing of fractures. Ind J Med Res 53: 623–628

    CAS  Google Scholar 

  21. Burch WM, Lebovitz HE (1982) Triidothyroxine stimulation of in vivo growth and maturation of embryonic chick cartilage. Endocrinology 111: 462–468

    Article  PubMed  CAS  Google Scholar 

  22. Baran DT, Bergfeld MA, Teitelbaum SL, Avioli LV (1978) Effect of testosterone therapy on bone formation in an osteoporotic hypogonadal male. Calcif Tissue Int 26: 103–106

    Article  CAS  Google Scholar 

  23. Lafferty FW, Spencer GE, Pearson OH (1964) Effects of andro gens, estrogens, and high calcium intakes on bone formation and resorption in osteoporosis. Am J Ned 36: 514–528

    CAS  Google Scholar 

  24. Riggs BL, Jowsey J, Goldsmith RS, et al. (1972) Short and long term effects of estrogen and synthetic anabolic hormone in postmenopausal osteoporosis. J Clin Invest 51: 1659–1663

    Article  PubMed  CAS  Google Scholar 

  25. Hahn TJ (1978) Corticosteroid-induced osteopenia. Arch Intern Med 138: 882–885

    Article  PubMed  Google Scholar 

  26. Aronow MA, Gerstenfeld LC, Owen TA, et al. (1990) Factors that promote progressive development of the osteoblast phenotype in cultured rat calvarial cells. J Cell Physiol 143: 213–221

    Article  PubMed  CAS  Google Scholar 

  27. Simmons DJ, Kunin AS (1967) Autoradiographic and biochemical investigations on the effect of cortisone on the bones of the rat. Clin Orthop 55: 201–215

    PubMed  CAS  Google Scholar 

  28. Cruess RL, Sakai T (1972) Effect of cortisone upon synthesis rates of some components of rat bone matrix. Clin Orthop 86: 253–259

    Article  PubMed  CAS  Google Scholar 

  29. Einhorn TA, Bonnarens F, Burstein AH (1986) The contribution of dietary protein and mineral to the healing of experimental fractures: a biomechanical study. J Bone Joint Surg 68A: 1389–139S

    Google Scholar 

  30. Jensen JE, Jensen TG, Smith TX et al. (1982) Nutrition in orthopedic surgery. J Bone Joint Surg 64: 1263–1272

    PubMed  CAS  Google Scholar 

  31. Wyngaarden JB, Smith LH, Bennett JC (eds) (1992) Cecil textbook of medicine, 19th edn., part XII Hematologic diseases. WB Saunders, Philadelphia, pp 817–1017

    Google Scholar 

  32. Rothman RH, Klemik JS, Toton JJ (1971) The effect of iron deficiency anemia on fracture healing. Clin Orthop 77: 276–283

    PubMed  CAS  Google Scholar 

  33. Hollo I, Gergely I, Boross M (1977) Smoking results in calcitonin resistance. JAMA 237: 2470

    Article  PubMed  CAS  Google Scholar 

  34. de Vernejoul MC, Bielakoff J, Herve M, et al. (1983) Evidence for defective osteoblastic function: a role for alcohol and tobacco consumption in osteoporosis in middle aged men. Clin Orthop 179: 107–115

    PubMed  Google Scholar 

  35. Lau GC, Luck JV, Marshall GJ, Griffith G (1989) The effect of cigarette smoking on fracture healing: an animal model. Clin Res 37: 132A

    Google Scholar 

  36. Brown CW, Orme TJ, Richardson HD (1986) The rate of pseudoarthrosis (surgical nonunion) in patients who are smokers and patients who are non smokers: a comparison study. Spine 11: 942–943

    Google Scholar 

  37. Zdeblick TA (1993) A prospective randomized study of lumbar fusion: preliminary results. Spine 18: 983–991

    Article  PubMed  CAS  Google Scholar 

  38. Younger EM, Chapman MW (1989) Morbidity at bone graft donor sites. J Orthop Trauma 3: 192–195

    Article  PubMed  CAS  Google Scholar 

  39. McCarthy RE, Peek RD, Morrissy RT, Hough AJ (1986) Allo-graft bone in spinal fusion for paralytic scoliosis. JBJS 68A: 370–375

    Google Scholar 

  40. Buck BE, Malinin TI, Brown MD (1989) Bone transplantation and human immunodeficiency virus. Clin Orthop 240: 129–136

    PubMed  Google Scholar 

  41. Salama R (1983) Xenogeneic bone grafting in humans. Clin Orthop 174: 113–121

    PubMed  Google Scholar 

  42. Jarcho M (1981) Calcium phosphate ceramics as hard tissue prosthetics. Clin Orthop 157: 259–278

    Google Scholar 

  43. Hoogendoorn HA, Renooij W, Akkermans LMA, et al. (1984) Long term study of large ceramic implants (porous hydroxyspatite) in dog femora. Clin Orthop 187: 281–288

    PubMed  CAS  Google Scholar 

  44. Ripamonti U (1991) The morphogenesis of bone in replicas of hydroxyspatite obtained from conversion of calcium carbonate exoskeletons of coral. JBJS 73A: 692–703

    Google Scholar 

  45. White E, Shors EC (1986) Biomaterial material aspects of Interpore-too porous hydroxyspatite. Dental Clinic North Amer 3o: 49–67

    Google Scholar 

  46. Thalgott J, Aebi M (eds) (1996) Manual of internal fixation of the spine, Chap. 22. Lippincott-Raven, New York, pp 285–295

    Google Scholar 

  47. Gurr KR, McAfee PC, Warden KE, Shih C (1989) Roentographic and biomechanical analysis of lumbar fusions: a canine model. J Orthop Res 7: 838–848

    Article  PubMed  CAS  Google Scholar 

  48. Bridwell KH, Sedgewick TA, O’Brien MF, et al. (1993) The role of fusion and instrumentation in the treatment of de-generative spondylolisthesis with spinal stenosis. J Spinal Disorders 6:461–472

    Article  CAS  Google Scholar 

  49. Aurori BF, Weierman RJ, Lowell HA, et al. (1985) Pseudoarthrosis after spinal fusion for scoliosis: a comparison of autogeneic and allogeneic bone grafts. Clin Orthop 199: 153–158

    PubMed  Google Scholar 

  50. Nagel DA, Kramers PC, Rahn BA, et al. (1991) A paradigm of delayed union and nonunion in the lumbosacral joint: a study of motion and bone grafting of the lumbosacral spine in sheep. Spine 16: 553–559

    Article  PubMed  CAS  Google Scholar 

  51. McAfee PC, Farey ID, Sutterlin CE, et al. (1989) Device related osteoporosis with spinal instrumentation. Spine 14: 919–926

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Goytan, M., Aebi, M. (1998). Biology of Spinal Fusions. In: AO ASIF Principles in Spine Surgery. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58824-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58824-2_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63746-9

  • Online ISBN: 978-3-642-58824-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics