Skip to main content

In Vitro Cellular Uptake, Distribution, and Metabolism of Oligonucleotides

  • Chapter
Antisense Research and Application

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 131))

Abstract

Eighteen years ago, Zamecnik and Stephenson used synthetic antisense oligonucleotides to inhibit Rous sarcoma virus replication and RNA translation in a cellular system ([Zamecnix and Stephenson 1978]). Since that time, enormous progress has been made towards the development of antisense oligo-nucleotides as therapeutic agents against a wide variety of host and viral disease targets ([Crooke and Lebleu 1993]; [St Crooke 1995a]; [Crooke and Bennett 1996]). Like other pharmacological agents, these novel compounds have both specific and nonspecific effects ([Stein and Cheng 1993]; [Crooke and Bennett 1996]; [ST Crooke 1996]). However, constantly emerging data from properly performed and appropriately controlled in vitro and in vivo experiments, as well as preliminary clinical data, suggest that antisense therapeutics do work via an antisense mechanism, i.e., by altering intermediary RNA metabolism and ultimately decreasing production of disease-associated gene products ([Crooke and Bennett 1996]; [Crooke 1996]).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aguilar L, Hemar A, Dautry-Varsat A, Blumenfeld M (1996) Hairpin, dumbbell, and single-stranded phosphodiester oligonucleotides exhibit identical uptake in T lymphocyte cell lines. Antisense Nucleic Acid Drug Dey 6:157–163

    Article  CAS  Google Scholar 

  • Akhtar S, Juliano RL (1992) Cellular uptake and intracellular fate of antisense oligonucleotides. Trends Cell Biol 2:139–144

    Article  PubMed  CAS  Google Scholar 

  • Akhtar S, Basu S, Wickstrom E, Juliano RL (1991) Interactions of antisense DNA oligonucleotide analogs with phospholipid membranes (liposomes). Nucleic Acids Res 19:555–5559

    Article  Google Scholar 

  • Akhtar S, Shoji Y, Juliano RL (1992) Pharmaceutical aspects of the biological stability and membrane transport characteristics of antisense oligonucleotides. In: Erickson RP, Izant JG (eds) Gene regulation: biology of antisense RNA and DNA. Raven, New York, pp 133–145

    Google Scholar 

  • Akhtar S, Beck GF, Hawley P, Irwin WJ, Gibson I (1996) The influence of polarized epithelial (Caco-2) cell differentiation on the cellular binding of phosphodiester and phosphorothioate oligonucleotides. Antisense Res Dev 6:19–206

    Google Scholar 

  • Albrecht T, Schwab R, Peschel C, Engels HJ, Fischer T, Huber C, Aulitzky WE (1996) Cationic lipid mediated transfer of c-abl and bcr antisense oligonucleotides to immature normal myeloid cells: uptake, biological effects and modulation of gene expression. Ann Hematol 72:73–79

    Article  PubMed  CAS  Google Scholar 

  • Anderson RGW (1993) Caveolae: where incoming and outgoing messengers meet. Proc Natl Acad Sci USA 90:10909–10913

    Article  PubMed  CAS  Google Scholar 

  • Asseline U, Toulme F, Thoung NT, Delarue M, Montenay-Garestier T, Helen C (1984) Oligodeoxynucleotides covalently linked to intercalating dyes as base sequence-specific ligands. Influence of dye attachment. EMBO J 3:795–800

    PubMed  CAS  Google Scholar 

  • Beltinger C, Saragovi HU, Smith RM, LeSauteur L, Shah N, DeDionisio L, Christensen L, Raible A, Jarett L, Gewirtz AM (1995) Binding, uptake and intracellular trafficking of phosphorothioate-modified oligodeoxynucleotides. J Clin Invest 95:1814–23

    Article  PubMed  CAS  Google Scholar 

  • Benet LA, Sheiner LB (1985) Pharmacokinetics: the dynamics of drug absorption, distribution and elimination. In: Gilman AG, Goodman LS, Rall TW, Murad F (eds) The pharmacological basis of therapeutics, 7th edn. Macmillan, New York, pp 3–13

    Google Scholar 

  • Bennett RM (1993) As nature intended? The uptake of DNA and oligonucleotides by eukaryotic cells. Antisense Res Dev 3:235–241

    PubMed  CAS  Google Scholar 

  • Bennett CF (1995) Intracellular delivery of oligonucleotides with cationic liposomes. In: Akhtar S (ed) Delivery strategies for antisense oligonucleotide therapeutics. CRC Press, Boca Raton, pp 223–232

    Google Scholar 

  • Bennett CF, Chiang M-Y, Chan H, Shoemaker JE, Mirabelli CK (1992) Cationic lipids enhance cellular uptake and activity of phosphorothioate antisense oligonucleotides. Mol Pharmacol 41:1023–1033

    PubMed  CAS  Google Scholar 

  • Bergan R, Connell Y, Fahmy B, Neckers L (1993) Electroporation enhances c-myc antisense oligodeoxynucleotide efficacy. Nucleic Acids Res 21:3567–3573

    Article  PubMed  CAS  Google Scholar 

  • Birg F, Praseuth D, Zerial A, Thuong NT, Asseline U, LeDoan T, Helene C (1990) Inhibition of simian virus 40 DNA replication in CV-1 cells by an oligodeoxynucleotide covalently linked to an intercalating agent. Nucleic Acids Res 18:2901–2908

    Article  PubMed  CAS  Google Scholar 

  • Bishop WP, Lin J, Stein CA, Krieg AM (1995) Interruption of a transforming growth factor a autocrine loop in Caco-2 cells by antisense oligodeoxynucleotides. Gastroenterology 109:1882–1889

    Article  PubMed  CAS  Google Scholar 

  • Bishop JS, Guy-Caffey JK, Ojwang JO, Smith SR, Hogan ME, Cossum PA, Rando RF, Chaudhary N (1996) Intramolecular G-quartet motifs confer nuclease resistance to a potent anti-HIV oligonucleotide. J Biol Chem 271:5698–5703

    Article  PubMed  CAS  Google Scholar 

  • Bradley MO, Chrisey LA, Hawkins JW (1992) Antisense therapeutics. In: Erickson RP, Izant JG (eds) Gene regulation: biology of antisense RNA and DNA. Raven, New York, p 285

    Google Scholar 

  • Brown DA, Kang S-H, Gryzanov SM, De Dionisio L, Heidenreich L, Sullivan S, Xu X, Nerenberg MI (1994) Effect of phosphorothioate modification of oligodeoxynucleotides on specific protein binding. J Biol Chem 269:26801–26805

    PubMed  CAS  Google Scholar 

  • Budker VG, Knorre DG, Vlassov VV (1992) Cell membranes as barriers for antisense constructions. Antisense Res Dev 2:177–184

    PubMed  CAS  Google Scholar 

  • Butler M, Stecker K, Bennett CF (1997) Distribution of phosphorothioate oligodeoxynucleotides in normal rodent tissues. Lab Invest 77:379–388

    PubMed  CAS  Google Scholar 

  • Campbell JM, Bacon TA, Wickstrom E (1990) Oligodeoxynucleotide phosphorothioate stability in subcellular extracts, culture media, sera and cerebrospinal fluid. J Biochem Biophys Methods 20:259–267

    Article  PubMed  CAS  Google Scholar 

  • Capaccioli S, Di Pasquale G, Mini E, Mazzei T Quattrone A (1993) Cationic lipids improve antisense oligonucleotide uptake and prevent degradation in cultured cells and human serum. Biochem Biophys Res Commun 197:818–825

    Article  PubMed  CAS  Google Scholar 

  • Chaix C, Toulme J-J, Morvan F, Rayner B, Imbach J-L (1993) a-Oligonucleotides: an entry to a challenging class of antisense molecules. In: Crooke ST, Lebleu B (eds) Antisense research and applications. CRC Press, Boca Raton, pp 223–234

    Google Scholar 

  • Chavany C, Saison-Behmoaras T, LeDoan T, Puisieux F, Couvreur P, Helene C (1994) Adsorption of oligonucleotides onto polyisohexylcyanoacrylate nanoparticles protects them against nucleases and increases their cellular uptake. Pharm Res 11:1370–1378

    Article  PubMed  CAS  Google Scholar 

  • Chin DJ, Green GA, Zon G, Szoka FC Jr, Straubinger RM (1990) Rapid nuclear accumulation of injected oligodeoxyribonucleotides. New Biol 2:1091–1100

    PubMed  CAS  Google Scholar 

  • Chow TY-K, Juby C, Brousseau R (1994) Specific targeting of antisense oligonucleotides to neutrophils. Antisense Res Dev 4:81–86

    PubMed  CAS  Google Scholar 

  • Clusel C, Ugarte E, Enjolras NO, Vasseur M, Blumenfeld M (1993) Ex vivo regulation of specific gene expression by nanomolar concentrations of double-stranded dumbbell oligonucleotides. Nucleic Acids Res 21:3405–3411

    Article  PubMed  CAS  Google Scholar 

  • Cohen JS (1993) Phosphorothioate oligodeoxynucleotides. In: Crooke ST, Lebleu B (eds) Antisense research and applications. CRC Press, Boca Raton, pp 206–221

    Google Scholar 

  • Cook PD (1993) Medicinal chemistry strategies for antisense research. In: Crooke ST, Lebleu B (eds) Antisense research and applications. CRC Press, Boca Raton, pp 149–187

    Google Scholar 

  • Cossum PA, Sasmor H, Dellinger D, Truong L, Cummins L, Owens S, Markham PM, Shea JP, Crooke ST (1994a) Disposition of 14C-labeled phosphorothioate oligonucleotide ISIS 2105 after intravenous administration to rats. J Pharmacol Exp Ther 267:1181–1190

    Google Scholar 

  • Cossum PA, Truong L, Owens S, Markham PM, Shea JP, Crooke ST (1994b) Pharmacokinetics of 14C-labeled phosphorothioate oligonucleotide ISIS 2105 after intradermal administration to rats. J Pharmacol Exp Ther 269:89–94

    CAS  Google Scholar 

  • Couture C, Chow T-Y (1992) Purification and characterization of a mammalian endoexonuclease. Nucleic Acids Res 20:4355–4361

    Article  PubMed  CAS  Google Scholar 

  • Crooke RM (1991) In vitro toxicology and pharmacokinetics of antisense oligonucleotides. Anti Cancer Drug Design 6:609–646

    PubMed  CAS  Google Scholar 

  • Crooke RM (1993a) Cellular uptake, distribution and metabolism of phosphorothioate, phosphodiester and methylphosphonate oligonucleotides. In: Crooke ST, Lebleu B (eds) Antisense research and applications. CRC Press, Boca Raton, pp 428–229

    Google Scholar 

  • Crooke RM (1993b) In vitro and in vivo toxicology of first generation analogs. In: Crooke ST, Lebleu B (eds) Antisense research and applications. CRC Press, Boca Raton, pp 472–492

    Google Scholar 

  • Crooke RM, Graham MJ, Cooke ME, Crooke ST (1995) In vitro pharmacokinetics of phosphorothioate antisense oligonucleotides. J Pharmacol Exp Ther 275:462–473

    PubMed  CAS  Google Scholar 

  • Crooke RM, Graham MJ, Martin MM, Griffey R, Cummins L (1997) Characterization of in vitro antisense oligonucleotide metabolism in rat liver homogenates. J Pharmacol Exp Ther (submitted)

    Google Scholar 

  • Crooke ST (1992) Therapeutic applications of oligonucleotides. Annu Rev Pharmcol Toxicol 32:329–276

    Article  CAS  Google Scholar 

  • Crooke ST (1995a) Therapeutic applications of oligonucleotides. Landes, Austin Crooke ST (1995b) Oligonucleotide therapeutics. In: Wolff ME (ed) Burger’s medicinal chemistry and drug discovery, 5th edn. 1. Principles and practice. Wiley, New York

    Google Scholar 

  • Crooke ST (1996) Proof of mechanism of antisense drugs. Antisense Nucleic Acid Drug Dev 6:145–147

    Article  PubMed  CAS  Google Scholar 

  • Crooke ST, Bennett CF (1996) Progress in antisense oligonucleotide therapeutics. Annu Rev Pharmacol Toxicol 36:107–129

    Article  PubMed  CAS  Google Scholar 

  • Crooke ST, Lebleu B (eds) (1993) Antisense research and applications. CRC Press, Boca Raton

    Google Scholar 

  • Crooke ST, Grillone LR, Tendolkar A, Garrett A, Fratkin M, Leeds JM, Barr WH (1994) A pharmacokinetic evaluation of ’4C-labeled afovirsen sodium in genital wart patients. Pharmacol Ther 56:641–646

    Article  CAS  Google Scholar 

  • Dean NM, McKay R (1994) Inhibition of protein kinase C-a expression in mice after systemic administration of phosphorothioate antisense oligodeoxynucleotides. Proc Natl Acad Sci USA 91:11762–11766

    Article  PubMed  CAS  Google Scholar 

  • DiBaise JK, Ebadi M, Iversen PL (1994) Patterns of cellular uptake and effects on cell survival using antimetallothionein oligodeoxyribonucleotide conjugates in vitro. Biol Sign 3:140–149

    Article  CAS  Google Scholar 

  • Eder PS, DeVine EJ, Dagle JM, Walder JA (1991) Substrate specificity and kinetics of degradation of antisense oligonucleotides by a 3’ exonuclease in plasma. Antisense Res Dev 1:141–151

    PubMed  CAS  Google Scholar 

  • Eckstein F (1985) Nucleoside phosphorothioates. Annu Rev Biochem 54:367–402

    Article  PubMed  CAS  Google Scholar 

  • Farrell CL, Bready JV, Kaufman SA, Qian Y-X, Burgess TL (1995) The uptake and distribution of phosphorothioate oligonucleotides into vascular smooth muscle cells in vitro and in rabbit arteries. Antisense Res Dev 5:175–183

    PubMed  CAS  Google Scholar 

  • Fisher TL, Terhorst T, Cao X, Wagner RW (1993) Intracellular disposition and metabolism of fluorescently labeled unmodified and modified oligonucleotides micro-injected into mammalian cells. Nucleic Acids Res 21:3857–3865

    Article  PubMed  CAS  Google Scholar 

  • Gao W-Y, Jaroszewski JW, Cohen JS, Cheng Y-C (1990) Inhibition of herpes simplex virus type 2 growth by 28-mer phosphorothioate oligodeoxycytidine. J Biol Chem 265:21072–20178

    Google Scholar 

  • Gao W-Y, Han FS, Storm C, Egan W, Cheng Y-C (1992) Phosphorothioate oligonucleotides are inhibitors of human DNA polymerases and RNase H: implications for antisense technology. Mol Pharmacol 41:223–229

    PubMed  CAS  Google Scholar 

  • Gao W-Y, Storm C, Egan W, Cheng Y-C (1993) Cellular pharmacology of phosphorothioate homooligodeoxynucleotides in human cells. Mol Pharmacol 43:45–50

    PubMed  CAS  Google Scholar 

  • Geselowitz DA, Neckers LM (1992) Analysis of oligonucleotide binding, internalization and intracellular trafficking utilizing a novel radiolabeled crosslinker. Antisense Res Dev 2:17–25

    PubMed  CAS  Google Scholar 

  • Geselowitz DA, Neckers LM (1995) Bovine serum albumin is a major oligonucleotidebinding protein found on the surface of cultured cells. Antisense Res Dev 5:213–217

    PubMed  CAS  Google Scholar 

  • Giles RV, Spiller DG, Tidd DM (1993) Chimeric oligodeoxynucleotide analogues: enhanced cell uptake of structures which direct ribonuclease H with high specificity. Anti Cancer Drug Des 8:33–51

    CAS  Google Scholar 

  • Goodarzi G, Watabe M, Watabe K (1991) Binding of oligonucleotides to cell membranes at acidic pH. Biochem Biophys Res Commun 181:1343–1351

    Article  PubMed  CAS  Google Scholar 

  • Goodchild J (1990) Conjugates of oligonucleotides and modified oligonucleotides: a review of their synthesis and properties. Bioconj Chem 1:165–187

    Article  CAS  Google Scholar 

  • Gottikh M, Bertrand, J-R, Baud-Demattei M-V, Lescot E, Giorgi-Renault S, Shabarova Z, Malvy C (1994) αß Chimeric antisense oligonucleotides: synthesis and nuclease resistance in biological media. Antisense Res Dev 4:251–258

    PubMed  CAS  Google Scholar 

  • Graham MJ, Freier SM, Crooke RM, Ecker DJ, Maslova RN, Lesnik EA (1993) Tritium labeling of antisense oligonucleotides by exchange with tritiated water. Nucleic Acids Res 21:3737–3743

    Article  PubMed  CAS  Google Scholar 

  • Graham MJ, Lemonidis KM, Monteith DM, Cooper S, Crooke ST, Crooke RM (1997) In vivo distribution and metabolism of a phosphorothioate oligonucleotide within the rat liver after intravenous administration. J Pharmacol Exp Ther (submitted)

    Google Scholar 

  • Hawley P, Gibson I (1992) The detection of oligodeoxynucleotide molecules following uptake into mammalian cells. Antisense Res Dev 2:119–127

    PubMed  CAS  Google Scholar 

  • Ho PTC, Ishiguro K, Wickstrom E, Sartorelli AC (1991) Non-sequence-specific inhibition of transferrin receptor express in HL-60 leukemia cells by phosphorothioate oligodeoxynucleotides. Antisense Res Dev 1:329–342

    PubMed  CAS  Google Scholar 

  • Hoke GD, Draper K, Freier SM, Gonzalez C., Driver VB, Zounes MC, Ecker DJ (1991) Effects of phosphorothioate capping on antisense oligonucleotide stability, hybridization and antiviral efficacy versus herpes simplex virus infection. Nucleic Acids Res 19:5743–5748

    Article  PubMed  CAS  Google Scholar 

  • Hughes JA, Avrutskaya AV, Juliano RL (1994) Influence of base composition on membrane binding and cellular uptake of 10-mer phosphorothioate oligonucleotides in Chinese hamster ovary (CHRC5) cells. Antisense Res Dev 4:211–215

    PubMed  CAS  Google Scholar 

  • Iversen P (1991) In vivo studies with phosphorothioate oligonucleotides: pharmacokinetic prologue. Anti Cancer Drug Des 6:531–538

    CAS  Google Scholar 

  • Jansen B, Wadl H, Inoue SA, Trulzsch B, Selzer E, Duchene M, Eichler H-G, Wolff K, Pehamberger H (1995) Phosphorothioate oligonucleotides reduce melanoma growth in a SCID-hu mouse model by a nonantisense mechanism. Antisense Res Dev 5:271–277

    PubMed  CAS  Google Scholar 

  • Jaroszewski JW, Kaplan O, Syi J-L, Sehested M, Faustino PJ, Cohen JS (1990) Concerning antisense inhibition of the multiple drug resistance gene. Cancer Commun 2:287–294

    PubMed  CAS  Google Scholar 

  • Kornberg A (1980) DNA replication. Freeman, San Francisco

    Google Scholar 

  • Krieg AM, Gmelig-Meyling F, Gourley MF, Kisch WJ, Chrisey LA, Steinberg AD (1991) Uptake of oligodeoxyribonucleotides by lymphoid cells is heterogeneous and inducible. Antisense Res Dev 1:161–171

    PubMed  CAS  Google Scholar 

  • Kukowska-Latallo JF, Bielinska AU, Johnson J, Spindler R, Tomalia DA, Baker JR Jr (1996) Efficient transfer of genetic material into mammalian cells using Starburst polyamidoamine dendrimers. Proc Natl Acad Sci USA 93:4897–4902

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Srinivasan H, Tewary HK, Iversen PL (1995) Characterization of binding sites, extent of binding, and drug interactions of oligonucleotides with albumin. Antisense Res Dev 5:131–139

    Google Scholar 

  • Leeds JM, Geary RS (1997) Pharmacokinetic properties of phosphorothioate oligonucleotides in humans. In: Crooke ST (ed) Antisense research and application. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Leeds JM, Truong LA, Cossum P, Prowse C, Crooke ST, Kornbrust D (1994) Interaction of phosphorothioate oligonucleotides with plasma proteins. Pharmacol Res 11:S-352

    Google Scholar 

  • Leeds JM, Graham MJ, Truong L, Cummins LL (1996) Quantitation of phos-phorothioate oligonucleotides in human plasma. Anal Biochem 235:36–43

    Article  PubMed  CAS  Google Scholar 

  • Leonetti J-P, Mechti, Degols C, Gagnor C, Lebleu B (1991) Intracellular distribution of microinjected antisense oligonucleotides. Proc Natl Acad Sci USA 88:2702–2706

    Article  PubMed  CAS  Google Scholar 

  • LeRoy C, Leduque P, Dubois PM, Saez JM, Langlois D (1996) Repression of transforming growth factor ßl protein by antisense oligonucleotide induced increase of adrenal cell differentiated functions. J Biol Chem 271:11027–11033

    Article  CAS  Google Scholar 

  • Levis JT, Butler WO, Tseng BY, Ts’o POP (1995) Cellular uptake of olig-odeoxyribonucleoside methylphosphonates. Antisense Res Dev 5:251–259

    PubMed  CAS  Google Scholar 

  • Lewis JG, Lin K-Y, Kothavale A, Flanagan WM, Matteucci MD, DePrince RB, Mook RA Jr, Hendren RW, Wagner RW (1996) A serum-resistant cytofectin for cellular delivery of antisense oligodeoxynucleotides and plasmic DNA. Proc Natl Acad Sci USA 93:3176–3181

    Article  PubMed  CAS  Google Scholar 

  • Liang W, Shi Z, Deshpande D, Malanga CJ, Rojanasakul Y (1996) Oligonucleotide targeting to alveolar macrophages by mannose receptor-mediated endocytosis. Biochem Biophys Acta 1279:227–234

    Article  PubMed  Google Scholar 

  • Lloyd RS, Linn S (1993) Nucleases involved in DNA repair. In: Linn SM, Lloyd RS, Roberts RJ (eds) Nucleases, 2nd edn, monograph 25. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 263–316

    Google Scholar 

  • Loke SL, Stein CA, Zhang XH, Mori K, Nakanishi M, Subasinghe S, Cohen JS, Neckers LM (1989) Characterization of oligonucleotide transport into living cells. Proc Natl Acad Sci USA 86:3474–3478

    Article  PubMed  CAS  Google Scholar 

  • Marcus-Sekura CJ, Woerner AM, Shinozuka K, Zon G, Quinnan GV, Jr (1987) Comparative inhibition of chloramphenical acetyltransferase gene expression by antisense oligonucleotide analogues having alkyl phosphotriester, methylphosphonate and phosphorothioate linkages. Nucleic Acids Res 15:5749–5963

    Article  PubMed  CAS  Google Scholar 

  • Marti G, Egan W, Noguchi P, Zon G, Matsukura M, Broder S (1992) Oligodeoxyribonucleotide phosphorothioate fluxes and localization in hematopoietic cells. Antisense Res Dev 2:27–39

    PubMed  CAS  Google Scholar 

  • Miller PS, McParland KB, Jayaraman K, Ts’o POP (1981) Biochemical and biological effects of nonionic nucleic acid methylphosphonates. Biochemistry 20:1874–1880

    Article  PubMed  CAS  Google Scholar 

  • Miller PS, Ts’o POP, Hogrefe RI, Reynolds MA, Arnold LA Jr (1993) Anticode oligonucleoside methylphosphonates and their psoralen derivatives. In: Crooke ST, Lebleu B (eds) Antisense research and applications. CRC Press, Boca Raton, pp 190–203

    Google Scholar 

  • Nakai D, Sewita T, Iwasa T, Aiwasa S, Shoji Y, Mizushima Y, Sugiyama Y (1996) Cellular uptake mechanism for oligonucleotides: involvement of endocytosis in the uptake of phosphodiester oligonucleotides by a human colorectal adenocarcinoma cell line, HCT-15. J Pharmacol Exp Ther 278:1362–1372

    PubMed  CAS  Google Scholar 

  • Neckers LM (1993) Cellular internalization of oligodeoxynucleotides. In: Crooke ST, Lebleu B (eds) Antisense research and applications. CRC Press, Boca Raton, pp 452–460

    Google Scholar 

  • Nestle FO, Mitra RS, Bennett CF, Chan H, Nickoloff BJ (1994) Cationic lipid is not required for uptake and selective inhibitory activity of ICAM-1 phosphorothioate antisense oligonucleotides in keratinocytes. J Invest Dermatol 103:569–575

    Article  PubMed  CAS  Google Scholar 

  • Noonberg SB, Garovoy MR, Hunt CA (1993) Characteristics of oligonucleotide uptake in human keratinocyte cultures. J Invest Dermatol 101:727–731

    Article  PubMed  CAS  Google Scholar 

  • Olsen DB, Kotzorek G, Eckstein F (1990) Investigation of the inhibitory role of phosphorothioate internucleotide linkages on the catalytic activity of the restriction endonuclease EcoRV. Biochemistry 29:9546–9551

    Article  PubMed  CAS  Google Scholar 

  • Partridge M, Vincent A, Matthews P, Puma J, Stein D, Summerton JS (1996) A simple method for delivering morpholino antisense oligos into the cytoplasm of cells. Antisense Nucleic Acid Drug Dev 6:169–175

    Article  PubMed  CAS  Google Scholar 

  • Pickering JG, Isner JM, Ford CM, Weir L, Lazarovits A, Rocnik EF, Chow LH (1996) Processing of chimeric antisense antisense oligonucleotides by human vascular smooth muscle cells and human atherosclerotic plaque. Implications for antisense therapy of restonosis after angioplasty. Circulation 93:772–780

    Article  PubMed  CAS  Google Scholar 

  • Robinson LA, Smith, LJ, Fontaine MP, Kay HD, Mountjoy CP, Pirruccello SJ (1995) c-myc antisense oligodeoxynucleotides inhibit proliferation of non-small cell lung cancer. Ann Thorac Surg 60:1583–1591

    Article  PubMed  CAS  Google Scholar 

  • Saison-Behmoaras T, Tocque B, Rey I, Chassignol M, Thoung NT, Helene C (1991) Short modified antisense oligonucleotides directed against Ha-ras point mutation induce selective cleavage of the mRNA and inhibit T24 cell proliferation. EMBO J 10:1111–1118

    PubMed  CAS  Google Scholar 

  • Sands, H, Feret G, Cocuzza AJ, Hobbs FW, Chidester D, Trainor GL (1994) Biodistribution and metabolism of internally 3H-labeled oligonucleotides. I. Comparison of a phosphodiester and a phosphorothioate. Mol Pharmacol 45:932–943

    PubMed  CAS  Google Scholar 

  • Sasmor HM, Dellinger DJ, Zenk P, Lee LP (1995) A practical method for the synthesis and purification of ’4C-labeled oligonucleotides. J Lab Cpds Rad Pharm 36:15–31

    Article  CAS  Google Scholar 

  • Shaw J-P, Kent K, Bird J, Fishback, J, Froehler B (1991) Modified deoxyoligonucleotides stable to exonuclease degradation in serum. Nucleic Acids Res 19:747–750

    Article  PubMed  CAS  Google Scholar 

  • Shoji Y, Akhtar A, Periasamy A, Herman B, Juliano RL (1991) Mechanism of cellular uptake of modified oligodeoxynucleotides containing methylphosphonate linkages. Nucleic Acids Res 19:5543–5550

    Article  PubMed  CAS  Google Scholar 

  • Smetsers TFCM, Skorski T, van de Locht LTF, Wessels HMC, Pennings AHM, deWitte T, Calabretta B, Mensink EJBM (1994) Antisense BCR-ABL oligonucleotides induce apoptosis in the Philadelphia chromosome-positive cell line BV173. Leukemia 8:129–140

    PubMed  CAS  Google Scholar 

  • Spiller DG, Tidd DM (1992) The uptake kinetics of chimeric oligodeoxynucleotide analogues in human leukaemia MOLT-4 cells. Anti Cancer Drug Des 7:115–129

    CAS  Google Scholar 

  • Spiller DG, Tidd DM (1995) Nuclear delivery of antisense oligodeoxynucleotides though reversible permeabilization of human leukemia cells with streptolysin O. Antisense Res Dev 5:13–21

    PubMed  CAS  Google Scholar 

  • Stein CA, Cheng Y-C (1993) Antisense oligonucleotides as therapeutic agents - is the bullet really magical? Science 261:1004–1012

    Article  PubMed  CAS  Google Scholar 

  • Stein CA, Subasinghe C, Shinozuka K, Cohen JS (1988a) Physicochemical properties of phosphorothioate oligodeoxynucleotides. Nucleic Acids Res 16:3206–3221

    Article  Google Scholar 

  • Stein CA, Mori K, Loke SL, Subasinghe C, Shinozuka K, Cohen JS, Neckers LM (1988b) Phosphorothioate and normal oligonucleotides with 5’-linked acridine: characterization and preliminary kinetics of cellular uptake. Gene 72:333–341

    Article  CAS  Google Scholar 

  • Stein CA, Iversen PL, Subasinghe C, Cohen JS, Stec WJ, Zon G (1990) Preparation of 35S-labeled polyphosphorothioate oligodeoxyribonucleotides by use of hydrogen phosphonate chemistry. Anal Biochem 188:11–16

    Article  PubMed  CAS  Google Scholar 

  • Stein CA, Neckers LM, Nair BC, Mumbauer S, Hoke G, Pal R (1991) Phosphorothioate oligodeoxycytidine interferes with binding of HIV-1 gp20 to CD4. J Acquir Immune Defic Syndr 4:686–693

    PubMed  CAS  Google Scholar 

  • Stein CA, Cleary AM, Yakubov L, Lederman S (1993a) Phosphorothioate oligodeoxynucleotides bind to the third variable loop domain (v3) of human immunodeficiency virus type 1 gp120. Antisense Res Dev 3:19–31

    CAS  Google Scholar 

  • Stein CA, Tonkinson JL, Zhang L-M, Yakubov L, Gervasoni J, Taub R, Rotenberg SA (1993b) Dynamics of the internalization of phosphodiester oligodeoxynucleotides in HL60 cells. Biochemistry 32:4855–4861

    Article  CAS  Google Scholar 

  • Stepkowski SM, Tu Y, Condon TP, Bennett CF (1994) Blocking of heart allograft rejection by intercellular adhesion molecule-1 antisense oligonucleotides alone or in combination with other immunosuppressive modalities. J Immunol 153:5336–5346

    PubMed  CAS  Google Scholar 

  • Tabor CW, Tabor H (1984) Polyamines. Annu Rev Biochem 53:749–790

    Article  CAS  Google Scholar 

  • Temsamani J, Kubert M, Tang J, Padmapriya A, Agrawal S (1994) Cellular uptake of oligodeoxynucleotide phosphorothioates and their analogs. Antisense Res Dev 4:35–42

    PubMed  CAS  Google Scholar 

  • Thierry AR, Dritschilo A (1992) Intracellular availability of unmodified, phosphorothioated and liposomally encapsulated oligodeoxynucleotides for antisense activity. Nucleic Acids Res 20:5691–5698

    Article  PubMed  CAS  Google Scholar 

  • Tidd DM (1990) A potential role for antisense oligonucleotide analogues in the development of oncogene targeted cancer chemotherapy. Anticancer Res 10:1169–1182

    PubMed  CAS  Google Scholar 

  • Tidd DM, Warenius HM (1989) Partial protection of oncogene, anti-sense oligodeoxynucleotides against serum nuclease degradation using terminal methylphosphonate groups. Br J Cancer 60:343–350

    Article  PubMed  CAS  Google Scholar 

  • Tolou H (1993) Administration of oligonucleotides to cultured cells by calcium phosphate precipitation method. Anal Biochem 215:156–158

    Article  PubMed  CAS  Google Scholar 

  • Tonkinson JL, Stein CA (1994) Patterns of intracellular compartmentalization, trafficking and acidification of 5’ fluorescein labeled phosphodiester and phosphorothioate oligodeoxynucleotides in HL60 cells. Nucleic Acids Res 22:4268–4275

    Article  PubMed  CAS  Google Scholar 

  • Vasanthakumar G, Ahmed NA (1989) Modulation of drug resistance in a daunorubicin resistant subline with oligonucleoside methylphosphonates. Cancer Commun 1:225–232

    PubMed  CAS  Google Scholar 

  • Wagner RW (1994) Gene inhibition using antisense oligodeoxynucleotides. Nature 372:333–335

    Article  PubMed  CAS  Google Scholar 

  • Wang S, Lee RJ, Cauchon G, Gorenstein DG, Low PS (1995) Delivery of antisense oligodeoxyribonucleotides against the human epidermal growth factor receptor into cultured KB cells with liposomes conjugated to the folate via polyethylene glycol. Proc Natl Acad Sci USA 92:3318–3322

    Article  PubMed  CAS  Google Scholar 

  • Wickstrom E (1986) Oligodeoxynucleotide stability in subcellular extracts and culture media. J Biochem Biophys Methods 13:97–102

    Article  PubMed  CAS  Google Scholar 

  • Woolf TM, Jennings CGB, Rebagliati M, Melton DA (1990) The stability, toxicity and effectiveness of unmodified and phosphorothioate antisense oligodeoxynucleotides in Xenopus oocytes and embryos. Nucleic Acids Res 18:1763–1769

    Article  PubMed  CAS  Google Scholar 

  • Wu-Pong S, Weiss TL, Hunt CA (1992) Antisense c-myc oligodeoxyribonucleotide cellular uptake. Pharmacol Res 9:1010–1017

    Article  CAS  Google Scholar 

  • Wu-Pong S, Weiss TL, Hunt AC (1994) Antisense c-myc oligonucleotide cellular uptake and activity. Antisense Res Dev 4:155–163

    PubMed  CAS  Google Scholar 

  • Yakubov LA, Deeva EA, Zarytova VF, Ivanova EM, Ryte AS, Yurchenko LV, Vlassov VV (1989) Mechanism of oligonucleotide uptake by cells: Involvement of specific receptors? Proc Natl Acad Sci USA 86:6454–6458

    Article  PubMed  CAS  Google Scholar 

  • Zamecnik PC, Stephenson ML (1978) Inhibition of Rous sarcoma virus replication and cell transformation by a specific oligodeoxynucleotide. Proc Natl Acad Sci USA 75:280–288

    Article  PubMed  CAS  Google Scholar 

  • Zamecnik P, Aghajanian J, Zamecnik M, Goodchild J, Witman G (1994) Electron micrographic studies of transport of oligodeoxynucleotides across eukaryotic cell membranes. Proc Natl Acad Sci USA 91:3156–3160

    Article  PubMed  CAS  Google Scholar 

  • Zerial A, Thuong NT, Helene C (1987) Selective inhibition of the cytopathic effect of type A influenza viruses by oligodeoxynucleotides covalently linked to an intercalating agent. Nucleic Acids Res 15:9909–9919

    Article  PubMed  CAS  Google Scholar 

  • Zhao Q, Matson S, Herrera CJ, Fisher E, Yu H, Krieg AM (1993) Comparison of cellular binding and uptake of antisense phosphodiester, phosphorothioate, and mixed phosphorothioate and methylphosphonate oligonucleotides. Antisense Res Dev 3:53–66

    PubMed  CAS  Google Scholar 

  • Zhao Q, Waldeschmidt T, Fisher R, Herrera CJ, Krieg AM (1994) Stage-specific oligonucleotide uptake in murine bone marrow B-cell precursors. Blood 84:3660–3666

    PubMed  CAS  Google Scholar 

  • Zhao Q, Temsamani J, Agrawal S (1995) Use of cyclodextrin and its derivatives as carriers for oligonucleotide delivery. Antisense Res Dev 5:185–192

    PubMed  CAS  Google Scholar 

  • Zhao Q, Song X, Waldschmidt T, Fisher E, Krief AM (1996) Oligonucleotide uptake in human hematopoietic cells is increased in leukemia and is related to cellular activation. Blood 88:1788–1795

    PubMed  CAS  Google Scholar 

  • Zon G (1989) Oligonucleotide analogues as potential chemotherapeutic agents. Pharmacol Res 5:539–549

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Crooke, R.M. (1998). In Vitro Cellular Uptake, Distribution, and Metabolism of Oligonucleotides. In: Crooke, S.T. (eds) Antisense Research and Application. Handbook of Experimental Pharmacology, vol 131. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58785-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58785-6_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63730-8

  • Online ISBN: 978-3-642-58785-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics