Advertisement

Triple Helix Strategies and Progress

  • T. Akiyama
  • M. Hogan
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 131)

Abstract

The binding of single-stranded nucleic acids to a DNA duplex is a phenomenon which has been known for at least 40 years. Recently, it has been recognized that the formation of such triple helices could serve as the basis for the design of site specific duplex DNA binding agents. During the past 7 years, several laboratories have worked to understand the physical chemistry of triple helix formation, for the purposes of exploiting and enhancing this mode of biomolecular recognition. Some of the most advanced approaches to nucleic acid chemistry, drug delivery formulation, and structure-based molecular design have been applied to this effort. Here, we review those design efforts and discuss current progress in the application of triple helix forming oligonucleotides (TFOs) as the basis for duplex DNA specific drug design.

Keywords

Triple Helix Nuclear Magnetic Resonance Study Triple Helix Structure Base Triplet Triplex Formation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akiyama T, Hogan ME (1996a) The design of an agent to bend DNA. Proc Natl Acad Sci U S A 93:12122–12127CrossRefGoogle Scholar
  2. Akiyama T, Hogan ME (1996b) Microscopic DNA flexibility analysis. J Biol Chem 271:29126–29135CrossRefGoogle Scholar
  3. Akiyama T, Hogan ME (1997) Structural analysis of DNA bending induced by tethered triple helix forming oligonucleotides biochemistry. Biochemistry 36:2307–2315PubMedCrossRefGoogle Scholar
  4. Alunni-Fabbroni M, Manfioletti GM, Manzini G, Xodo LE (1994) Inhibition of T7 RNA polymerase transcription by phosphate and phosphorothioate triplex-forming oligonucleotides targeted to a R.Y site downstream from the promoter. Eur J Biochem 226:831–839PubMedCrossRefGoogle Scholar
  5. Alunni-Fabbroni M, Manzini G, Quadrifoglio F, Xodo LE (1996) Guanine-rich oligonucleotides targeted to a critical R.Y site located in the Ki-ras promoter. The effect of competing self-structures on triplex formation. Eur J Biochem 238:143–151PubMedCrossRefGoogle Scholar
  6. Arnott S, Bond PJ (1973). Triple-stranded polynucleotide helix containing only purine bases. Science 181:68–69PubMedCrossRefGoogle Scholar
  7. Arnott S, Selsing E (1974) Structures for the polynucleotide complexes poly d(A) with poly d(T), and poly d(T) with poly d(A) with poly d(T). J Mol Biol 88:68–69Google Scholar
  8. Arnott S, Hukins DWL, Dover SD (1972) Optimized parameters for RNA double-helices. Biochem Biophys Res Commun 48:1392–1399PubMedCrossRefGoogle Scholar
  9. Azhayeva E, Azhayev A, Guzaev A, Hovinen J, Lonnberg H (1995) Looped oligonucleotides form stable hybrid complexes with a single-stranded DNA. Nucleic Acids Res 23:1170–1176PubMedCrossRefGoogle Scholar
  10. Balatskaya SV, Belotserkovskii BP, Johnston BH (1996) Alternate-strand triplex formation: modulation of binding to matched and mismatched duplexes by sequence choice in the Pu.Pu.Py block. Biochemistry 35:13328–13337PubMedCrossRefGoogle Scholar
  11. Barawkar DA, Rajeev KG, Kumar VA, Ganesh KN (1996) Triple helix formation at physiological pH by 5-Me-dC-N4-(spermine) [X] oligodeoxynucleosides: non protonation of N3 in X of X*G:C triad and effect of base mismatch/ionic strength on triplex stabilities. Nucleic Acids Res 24:1229–1237PubMedCrossRefGoogle Scholar
  12. Barkley MD, Zimm BH (1979) Theory of twisting and bending of chain macromolecules analysis of the fluorescence depolarization of DNA. J Chem Phys 70:2991–3007CrossRefGoogle Scholar
  13. Bates PJ, Macaulay VM, McLean, MJ, Jenkins TC, Reszka AP, Laughton CA, Neidle S (1995) Characterization of triplex-directed photoadduct formation by psoralenlinked oligonucleotides. Nucleic Acids Res 23:3627–3632PubMedCrossRefGoogle Scholar
  14. Bazile D, Gautier C, Rayner, B, Imbach JL, Paoletti C, Paoletti, J (1989) alpha-DNA X: alpha and beta tetrathymidilates covalently linked to oxazolopyridocarbazolium (OPC): comparative stabilization of oligo beta[dT]:oligo beta [dA] and oligo alpha [dT]:oligo beta [dA] duplexes by the intercalating agent. Nucleic Acids Res 17:7749–7759PubMedCrossRefGoogle Scholar
  15. Beal PA, Dervan PB (1991) Second structural motif for recognition of DNA by oligonucleotide-directed triple-helix formation. Science 251:1360–1363PubMedCrossRefGoogle Scholar
  16. Beal PA, Dervan PB (1992a) The influence of single base triplet changes on the stability of a pur.pur.pyr triple helix determined by affinity cleaving. Nucleic Acids Res 20:2773–2776CrossRefGoogle Scholar
  17. Beal PA, Dervan PB (1992b) Recognition of double helical DNA by alternate strand triple helix formation. J Am Chem Soc 114:4976–4982CrossRefGoogle Scholar
  18. Beese LS, Derbyshire V, Steitz TA (1993) Structure of DNA polymerase I Klenow fragment bound to duplex DNA. Science 260:352–355PubMedCrossRefGoogle Scholar
  19. Bennett CF, Chiang, MY, Chan H, Shoemaker JEE, Mirabelli CK (1992) Cationic lipids enhance cellular uptake and activity of phosphorothioate antisense oligonucleotides. Mol Pharmacol 41:1023–1033PubMedGoogle Scholar
  20. Berressem R, Engels JW (1995) 6-Oxocytidine a novel protonated C-base analogue for stable triple helix formation. Nucleic Acids Res 23:3465–3472PubMedCrossRefGoogle Scholar
  21. Best GC, Dervan PB (1995) Energetics of formation of sixteen triple helical complexes which vary at a single position within a pyrimidine motif. J Am Chem Soc 117:1187–1193CrossRefGoogle Scholar
  22. Bigey P, Pratviel G, Meunier B (1995) Cleavage of double-stranded DNA by “metalloporphyrin-linker-oligonucleotide” molecules: influence of the linker. Nucleic Acids Res 23:3894–3900PubMedCrossRefGoogle Scholar
  23. Birg F, Praseuth D, Zerial A, Thuong NT, Asseline U, Doan TL, Helene C (1990) Inhibition of simian virus 40 DNA replication in CV-1 cells by an oligodeoxynucleotide covalently linked to an intercalating agents. Nucleic Acids Res 18:2901–2908PubMedCrossRefGoogle Scholar
  24. Booher MA, Wang S, Kool ET (1994) Base pairing and steric interactions between pyrimidine strand bridging loops and the purine strand in DNA pyrimidine.purine.pyrimdine triplexes. Biochemistry 33:4645–4671PubMedCrossRefGoogle Scholar
  25. Bouziane M, Cherny DI, Mouscadet JF, Auclair C (1996) Alternate strand DNA triple helix-mediated inhibition of HIV-1 U5 long terminal repeat integration in vitro. J Biol Chem 271:10359–10364PubMedCrossRefGoogle Scholar
  26. Bredberg A, Sandor Z, Brant M (1995) Mutational response of Fanconi anaemia cells to shuttle vector site-specific psoralen cross-link. Carcinogenesis 16:555–561PubMedCrossRefGoogle Scholar
  27. Broitman SL, Im DD, Fresco JR (1987) Formation of the triple-stranded polynucle-otide helix, poly (A.A.U). Proc Natl Acad Sci U S A 84:5120–5124PubMedCrossRefGoogle Scholar
  28. Brossalina E, Toulme JJ (1993a) A DNA hairpin as a target for antisense oligonucleotides. J Am Chem Soc. 115:796–797CrossRefGoogle Scholar
  29. Brossalina E, Pascolo E, Toulme JJ (1993b) The binding of an antisense oligonucleotide to a hairpin structure via triplex formation inhibits chemical and biological reactions. Nucleic Acids Res 21:5616–5622CrossRefGoogle Scholar
  30. Brown PM, Drabble A, Fox KR (1996) Effect of a triplex-binding ligand on triple helix formation at a site within a natural DNA fragment. Biochem J 314:427–432PubMedGoogle Scholar
  31. Brunar H, Dervan PB (1996) Sequence composition effect on the stabilities of triple helix formation by oligonucleotides containing N-7 deoxyguanosine. Nucleic Acids Res 24:1987–1991PubMedCrossRefGoogle Scholar
  32. Callahan DE, Trapane TL, Miller PS, T’so POP, Kan LS (1991) Comparative circular dichroism and fluorescence studies of oligodeoxyribonucleotide and oligodeoxyribonucleoside methylphosphonate pyrimidine strands in duplex and triplex formation. Biochemistry 30:1650–1655PubMedCrossRefGoogle Scholar
  33. Cassidy SA, Strekowski L, Wilson D, Fox, KR (1994) Effect of a triplex-binding ligand on parallel and antiparallel DNA triple helices using short unmodified and acridine-linked oligonucleotides. Biochemistry 33:15338–15347PubMedCrossRefGoogle Scholar
  34. Chalikian TV, Plum GE, Sarvazyan AP, Breslauer KJ (1994) Influence of drug binding on DNA hydration: acoustic and densimetric characterizations of netropsin binding to the poly(dAdT).poly(dAdT) and poly(dA).poly(dT) duplexes and the poly(dT).poly(dA).poly(dT) triplex at 25 degrees C. Biochemistry 33:8629–8640PubMedCrossRefGoogle Scholar
  35. Chandler SP, Fox KR (1993) Triple helix formation at A8XA8.T8YT8. FEBS Lett 332:189–192PubMedCrossRefGoogle Scholar
  36. Chandler SP, Fox KR (1995) Extension of DNA triple helix formation to a neighbouring (AT)n site. FEBS Lett 360:21–25PubMedCrossRefGoogle Scholar
  37. Chandler SP, Strekowski L, Wilson D, Fox KR (1995) Footprinting studies on ligands which stabilize DNA triplexes: effects on stringency within a parallel triple helix. Biochemistry 34:7234–7242PubMedCrossRefGoogle Scholar
  38. Chaudhuri NC, Kool ET (1995) Very high affinity DNA recognition by bicyclic and cross-linked oligonucleotides. J Am Chem Soc 117:10434–10442PubMedCrossRefGoogle Scholar
  39. Cheng AJ, Van Dyke MW (1993) Monovalent cation effects on intermolecular purine-purine-pyrimidine triple-helix formation. Nucleic Acids Res 21:5630–5635PubMedCrossRefGoogle Scholar
  40. Cheng AJ, Van Dyke MW (1994) Oligodeoxyribonucleotide length and sequence effects on intermolecular purine-purine-pyrimidine triple-helix formation. Nucleic Acids Res 22:4742–4747CrossRefGoogle Scholar
  41. Cheng YK, Pettitt BM (1992) Hoogsteen versus reversed-Hoogsteen base pairing: DNA triple helixes. J Am Chem Soc 114:4465–4474CrossRefGoogle Scholar
  42. Cheng YK, Pettitt BM (1995) Solvent effects on model d(CG.G)7 and d(TA.T)7 DNA triple helices. Biopolymers 35:457–473PubMedCrossRefGoogle Scholar
  43. Cherny DI, Malkov VA, Volodin AA, Frank-Kamenetskii MD (1993) Electron microscopy visualization of oligonucleotide binding to duplex DNA via triplex formation. J Mol Biol 230:379–383PubMedCrossRefGoogle Scholar
  44. Cho BP, Evans FE (1991) Structure of oxidatively damaged nucleic acid adducts: Tautomerism, ionization, and protonation of 8-droxyadenosine studied by 15N NMR. Nucleic Acids Res 19:1041–1047PubMedCrossRefGoogle Scholar
  45. Cimino GD, Gamper HB, Isaacs ST, Hearst JE (1985) Psoralen as photoactive probes of nucleic acid structure and functions: organic chemistry, photochemistry, and biochemistry. Annu Rev Biochem 54:1151–1193PubMedCrossRefGoogle Scholar
  46. Collier DA, Mergny JL, Thuong NT, Helene C (1991a) Site-specific intercalation at the triplex-duplex junction induces a conformational change which is detectable by hypersensitivity to diethylpyrocarbonate. Nucleic Acids Res 19:4219–4224CrossRefGoogle Scholar
  47. Collier DA, Thuong NT, Helene C (1991b) Sequence-specific bifunctional DNA ligands based on triple-helix-forming oligonucleotides inhibit restriction enzyme cleavage under physiological condition. J Am Chem Soc 113:1457–1458CrossRefGoogle Scholar
  48. Colocci N, Dervan PB (1995) Cooperative triple helix formation at adjacent DNA sites: Sequence composition dependence at the junction. J Am Chem Soc 117:4781–4787CrossRefGoogle Scholar
  49. Cooney M, Czernuszewicz G, Postel EH, Flint SJ, Hogan ME (1988) Site-specific oligonucleotide binding represses transcription of the human c-myc gene in vitro. Science 241:456–459PubMedCrossRefGoogle Scholar
  50. Dagle JM, Weeks DL (1996) Positively charged oligonucleotides overcome potassium-mediated inhibition of triplex DNA formation. Nucleic Acids Res 24:2143–2149PubMedCrossRefGoogle Scholar
  51. Dagneaux C, Liquier J, Taillandier E (1995) Sugar conformations in DNA and RNA-DNA triple helices determined by FTIR spectroscopy: role of backbone composition. Biochemistry 34:16618–16623PubMedCrossRefGoogle Scholar
  52. de Bizemont T, Duval-Valentin G, Sun JS, Bisagni E, Garestier T, Helene C (1996) Alternate strand recognition of double-helical DNA by (T,G)-containing oligonucleotides in the presence of a triple helix-specific ligand. Nucleic Acids Res 24:1136–1143PubMedCrossRefGoogle Scholar
  53. de los Santos C, Rosen M, Pátel D (1989) NMR studies of DNA (R+)n.(Y-)n.(Y+)n triple helices in solution: imino and amino proton markers of T.A.T and C.G.C+ base-triple formation. Biochemistry 28:7282–7289PubMedCrossRefGoogle Scholar
  54. Degols G, Clarenc JP, Lebleu B, Leonetti JP (1994) Reversible inhibition of gene expression by a psoralen functionalized triple helix forming oligonucleotide in intact cells. J Biol Chem 269:16933–16937PubMedGoogle Scholar
  55. Distefano MD, Dervan PB (1993) Energetics of cooperative binding of oligonucleotides with discrete dimerization domains to DNA by triple helix formation. Proc Natl Acad Sci U S A 90:1179–1183CrossRefGoogle Scholar
  56. Distefano MD, Shin JA, Dervan PB (1991) Cooperative binding of oligonucleotides to DNA by triple helix formation: dimerization via Watson-Crick hydrogen bonds. J Am Chem Soc 113:5901–5902CrossRefGoogle Scholar
  57. Dittrich K, Gu J, Tinder R, Hogan M, Gao X (1994) T.C.G triplet in an antiparallel purine.purine.pyrimidine DNA triplex. Conformational studies by NMR. Biochemistry 33:4111–4120PubMedCrossRefGoogle Scholar
  58. Durand M, Maurizot JC (1996) Distamycin A complexation with a nucleic acid triple helix. Biochemistry 35:9133–9139PubMedCrossRefGoogle Scholar
  59. Durand M, Thuong NT, Maurizot JC (1992a) Binding of netropsin to a DNA triple helix. J Biol Chem 267:24394–24399Google Scholar
  60. Durand M, Peloille S, Thuong NT, Maurizot JC (1992b) Triple-helix formation by an oligonucleotide containing one (dA)12 and two (dT)12 sequences bridged by two hexaethylene glycol chains. Biochemistry 31:9197–9204CrossRefGoogle Scholar
  61. Durland RH, Kessler DJ, Gunnell S, Duvic M, Pettitt BM, Hogan ME (1991) Binding of triple helix forming oligonucleotides to sites in gene promoters. Biochemistry 30:9246–9255PubMedCrossRefGoogle Scholar
  62. Durland RH, Rao TS, Revankar GR, Tinsley JH, Myrick MA, Seth DM, Rayford J, Singh P, Jayaraman K (1994) Binding of T and T analogues to CG base pairs in antiparallel triplexes. Nucleic Acids Res 22:3233–3240PubMedCrossRefGoogle Scholar
  63. Durland RH, Rao TS, Bodepudi V, Seth DM, Jayaraman K, Revankar GR (1995) Azole substituted oligonucleotides promote antiparallel triplex formation at nonhomopurine duplex targets. Nucleic Acids Res 23:647–653PubMedCrossRefGoogle Scholar
  64. Duval-Valentin G, Thuong NT, Helene C (1992) Specific inhibition of transcription by triple helix-forming oligonucleotides. Proc Natl Acad Sci U S A 89:504–508PubMedCrossRefGoogle Scholar
  65. Duval-Valentin G, de Bizemont T, Takasugi M, Mergny JL, Bisagni E, Helene C (1995) Triple-helix specific ligands stabilize H-DNA conformation. J Mol Biol 247:847–858PubMedCrossRefGoogle Scholar
  66. Ebbinghaus SW, Gee JE, Rodu B, Mayfield CA, Sanders G, Miller DM (1993) Triplex formation inhibits HER-2/neu transcription in vitro. J Clin Invest 92:2433–2439PubMedCrossRefGoogle Scholar
  67. Egli M, Williams LD, Gao Q, Rich A (1991) Structure of the pure-spermine form of Z-DNA (magnesium free) at 1-A resolution. Biochemistry 30:11388–11402PubMedCrossRefGoogle Scholar
  68. Escude C, Nguyen CH, Mergny JL, Sun JS, Bisagni E, Garestier T, Helene C (1995) Selective stabilization of DNA triple helixes by benzopyridoindole derivatives. J Am Chem Soc 117:10212–10219CrossRefGoogle Scholar
  69. Escude C, Giovannangeli C, Sun JS, Lloyd DH, Chen J-K, Gryaznov SM, Garestier T, Helene C (1996a) Stable triple helices formed by oligonucleotide N3’—>N5’ phosphoramidates inhibit transcription elongation. Proc Natl Acad Sci U S A 93:4365–4369CrossRefGoogle Scholar
  70. Escude C, Sun JS, Nguyen CH, Bisagni E, Garestier T, Helene C (1996b) Ligand-induced formation of triple helices with antiparallel third strands containing G and T. Biochemistry 35:5735–5740CrossRefGoogle Scholar
  71. Fedorova OS, Knorre DG, Podust LM, Zarytova VF (1988) Complementary addressed modification of double-stranded DNA within a ternary complex. FEBS Lett 228:273–276PubMedCrossRefGoogle Scholar
  72. Fedoseyeva EV, Li Y, Huey B, Tam S, Hum A, Benichou G, Garovoy MR (1994) Inhibition of interferon-gamma-mediated immune functions by oligonucleotides. Suppression of human T cell proliferation by downregulation of IFN-gammainduced ICAM-1 and Fc-receptor on accessory cells. Transplantation 57:606–612PubMedGoogle Scholar
  73. Felsenfeld G (1992) Chromatin as an essential part of the transcription mechanism. Nature 355:219–223PubMedCrossRefGoogle Scholar
  74. Felsenfeld G, Davies DR, Rich A (1957) Formation of a three-stranded polynucleotide molecule. J Am Chem Soc 79:2023–2024CrossRefGoogle Scholar
  75. Fisher TL, Terhorst T, Cao X, Wangner RW (1993) Intracellular disposition and metabolism of fluorescently-labeled unmodified and modified oligonucleotides microinjected into mammalian cells. Nucleic Acids Res 21:3857–3865PubMedCrossRefGoogle Scholar
  76. Fossella JA, Kim YJ, Shih H, Richards EG, Fresco JR (1993) Relative specificities in binding of Watson-Crick base pairs by third strand residues in a DNA pyrimidine triplex motif. Nucleic Acids Res 21:4511–4515PubMedCrossRefGoogle Scholar
  77. Fox KR (1994) Formation of DNA triple helices incorporating blocks of G.GC and T.AT triplets using short acridine-linked oligonucleotides. Nucleic Acids Res 22:2016–2021PubMedCrossRefGoogle Scholar
  78. Fox KR (1995b) Kinetic studies on the formation of acridine-linked DNA triple helices. FEBS Lett 357:312–316CrossRefGoogle Scholar
  79. Fox KR, Polucci P, Jenkins TC, Neidle S (1995a) A molecular anchor for stabilizing triple-helical DNA. Proc Natl Acad Sci U S A 92:7887–7891CrossRefGoogle Scholar
  80. Francois JC, Saison-Behmoaras T, Chassignol M, Thuong NT, Helene C (1989a) Sequence-targeted cleavage of single-and double-stranded DNA by oligothymidilates covalently linked to 1,10-phenanthroline. J Biol Chem 264:5891–5898Google Scholar
  81. Francois JC, Saison-Behmoaras T, Barbier C, Chassignol M, Thuong N T, Helene C (1989b) Sequence-specific recognition and cleavage of duplex DNA via triple-helix formation by oligonucleotides covalently linked to a phenanthroline-copper chelate. Proc Natl Acad Sci U S A 86:9702–9706CrossRefGoogle Scholar
  82. Gaffney BL, Kung PP, Wang C, Jones RA (1995) Nitrogen-15-labeled oligodeoxynucleotides 8. Use of 15N-NMR to probe Hoogsteen hydrogen bonding at guanine and adenine N7 atoms of a DNA triplex. J Am Chem Soc 117:12281–12283CrossRefGoogle Scholar
  83. Gamper HB, Reed MW, Cox T, Virosco JS, Adams AD, Gall AA, Scholler JK, Meyer RB Jr (1993) Facile preparation of nuclease resistant 3’-modified oligodeoxynucleotides. Nucleic Acids Res 21:145–150PubMedCrossRefGoogle Scholar
  84. Gasparro FP, Havre PA, Olack GA, Gunther EJ, Glazer PM (1994) Site-specific targeting of psoralen monoadduct and crosslink formation. Nucleic Acids Res 22:2845–2852PubMedCrossRefGoogle Scholar
  85. Gee JE, Blume Scott, Snyder RC, Ray R, Miller DM (1992) Triplex formation prevents Splbinding to the dihydrofolate reductase promoter. J Biol Chem 267:11163–11167PubMedGoogle Scholar
  86. Gee JE, Yen RL, Hung MC, Hogan ME (1994) Triplex formation at the rat neuoncogene promoter. Gene 149:109–114PubMedCrossRefGoogle Scholar
  87. Gee JE, Revankar GR, Rao TS, Hogan ME (1995) Triplex formation at the rat neu gene utilizing imidazole and 2’-deoxy-6-thioguanine base substitution. Biochemistry 34:2042–2048PubMedCrossRefGoogle Scholar
  88. Giovannangeli C, Montenay-Garestier T, Rougee M, Chassignol M, Thuong NT, Helene C (1991) Single-stranded DNA as a target for triple helix formation. J Am Chem Soc 113:7775–7777CrossRefGoogle Scholar
  89. Giovannangeli C, Rougee M, Garestier T, Thuong NT, Helene C (1992a) Triple-helix formation by oligonucleotides containing the three bases thymine, cytosine, and guanine. Proc Natl Acad Sci U S A 89:8631–8635CrossRefGoogle Scholar
  90. Giovannangeli C, Thuong NT, Helene C (1992b) Oligodeoxynucleotide-directed photo-induced cross-linking of HIV proviral DNA via triple-helix formation. Nucleic Acids Res 20:4275–4281CrossRefGoogle Scholar
  91. Giovannangeli C, Thuong NT, Helene C (1993) Oligonucleotide clamps arrest DNA synthesis on a single-stranded DNA target. Proc Natl Acad Sci U S A 90:10013–10017PubMedCrossRefGoogle Scholar
  92. Goodman SD, Nash HA (1989) Functional replacement of a protein-induced bend in a DNA recombination. Nature 341:251–254PubMedCrossRefGoogle Scholar
  93. Grant KB, Dervan PB (1996) Sequence-specific alkylation and cleavage of DNA mediated by purine motif triple helix. Biochemistry 35:12313–12319PubMedCrossRefGoogle Scholar
  94. Greenberg WA, Dervan PB (1995) Energetics of formation of sixteen triple helical complexes which vary at a single position within a purine motif. J Am Chem Soc 117:5016–5022CrossRefGoogle Scholar
  95. Griffin LC, Dervan PB (1989) Recognition of thymine adenine base pairs by guanine in a pyrimidine triple helix motif. Science 245:967–970PubMedCrossRefGoogle Scholar
  96. Griffin LC, Kiessling LL, Beal PA, Gillespie P, Dervan PB (1992) Recognition of all four base pairs of double-helical DNA by triple-helix formation: design of nonnatural deoxyribonucleosides for pyrimidine:purine base pair binding. J Am Chem Soc 21:7976–7982CrossRefGoogle Scholar
  97. Grigoreiv M, Praseuth D, Robin P, Hemar A, Saison-Behmoaras T, Dautry-Varsat A, Thuong NT, Helene C, Harel-Bellan A (1992) A triple helix-forming oligonucleotide-intercalator conjugate acts as a transcriptional repressor via inhibition of NF kappa B binding to interleukin-2 receptor alpha-regulatory sequence. J Biol Chem 267:3389–3395Google Scholar
  98. Grigoreiv M, Praseuth D, Guieysse AL, Robin P, Thuong NT, Helene C, Harel-Bellan A (1993) Inhibition of gene expression by triple helix-directed DNA cross-linking at specific sites. Proc Natl Acad Sci U S A 90:3501–3505CrossRefGoogle Scholar
  99. Gryaznov SM, Lloyd DH, Chen JK, Schultz RG, DeDionisio LA, Ratmeryer L, Wilson WD (1995) Oligonucleotide N3’->P5’ phosphoramidates. Proc Natl Acad Sci U S A 92:5798–5802PubMedCrossRefGoogle Scholar
  100. Guieysse AL, Paseuth D, Francois JC, Helene C (1995) Inhibition of replication initiation by triple helix-forming oligonucleotides. Biochem Biophys Res Commun 217:186–194PubMedCrossRefGoogle Scholar
  101. Gunther EJ, Havre PA, Gasparro FP, Glazer PM (1996) Triple-mediated, in vitro targeting of psoralen photoadducts within the genome of a transgenic mouse. Eur J Biochem 63:207–212Google Scholar
  102. Guschlbauer W, Duplaa AM, Guy A, Teoule R, Fazakerley GV (1991) Structure and in vitro replication of DNA templates containing 7,8-dihydro-8-oxoadenine. Nucleic Acids Res 19:1753–1758PubMedCrossRefGoogle Scholar
  103. Hacia JG, Dervan PB, Wold BJ (1994) Inhibition of Klenow fragment DNA polymerase on double-helical templates by oligonucleotide-directed triple-helix formation. Biochemistry 33:6192–6200PubMedCrossRefGoogle Scholar
  104. Hampel KJ, Crosson P, Lee JS (1991) Polyamines favor DNA triplex formation at neutral pH. Biochemistry 30:4455–4459PubMedCrossRefGoogle Scholar
  105. Han H, Dervan PB (1993) Sequence-specific recognition of double helical RNA and RNA.DNA by triple helix formation. Proc Natl Acad Sci U S A 90:3806–3818PubMedCrossRefGoogle Scholar
  106. Hardenbol P, van Dyke MW (1996) Sequence specificity of triplex DNA formation: analysis by a combinational approach, restriction endonuclease protection selection and amplification. Proc Natl Acad Sci U S A 93:2811–2816PubMedCrossRefGoogle Scholar
  107. Hausheer FH, Singh UC, Saxe JD, Colvin OM, T’so POP (1990) Can oligonucleotide methylphosphonates form a stable triplet with a double DNA helix? Anticancer Drug Des 5:159–167Google Scholar
  108. Hausheer FH, Singh UC, Saxe JD, Flory JP, Tufto KB (1992) Thermodynamic and conformational characterization of 5-methylcytosine-versus cytosine-substituted oligomers in DNA triple helices: ab initio quantum mechanical and free energy perturbation studies. J Am Chem Soc 114:5356–5362CrossRefGoogle Scholar
  109. Havre PA, Glazer PM (1993a) Targeted mutagenesis of simian virus 40 DNA mediated by a triple helix-forming oligonucleotide. J Virol 67:7324–7331Google Scholar
  110. Havre PA, Glazer PM (1993b) Targeted mutagenesis of DNA using triple helix-forming oligonucleotides linked to psoralen. Proc Natl Acad Sci U S A 90:7879–7883CrossRefGoogle Scholar
  111. Helm CW, Shresta K, Thomas S, Shingleton HM, Miller DM (1993) A unique c-myctargeted triplex-forming oligonucleotide inhibits the growth of ovarian and cervical carcinomas in vitro. Gynecol Oncol 49:339–343PubMedCrossRefGoogle Scholar
  112. Higuchi S, Tsuboi M, Iitaka Y (1969) Infrared spectrum of a DNA-RNA hybrid. Biopolymers 7:909–916CrossRefGoogle Scholar
  113. Holland JA, Hoffman DW (1996) Structural features and stability of an RNA triple helix in solution. Nucleic Acids Res 24:2841–2848PubMedCrossRefGoogle Scholar
  114. Hopkins HP, Hamilton DD, Wilson WD, Zon G (1993) Duplex and triple helix formation with dA19 and dT19, thermodynamic parameters from calorimetric, NMR, and circular dichroism. J Phys Chem 97:6553–6563CrossRefGoogle Scholar
  115. Home DA, Dervan PB (1990) Recognition of mixed-sequence duplex DNA by alternate-strand triple-helix formation. J Am Chem Soc 112:2435–2437CrossRefGoogle Scholar
  116. Home DA, Dervan PB (1991) Effects of an abasic site on triple helix formation characterized by affinity cleaving. Nucleic Acids Res 19:4963–4965CrossRefGoogle Scholar
  117. Howard FB, Miles HT, Liu K, Frazier J, Raghunathan G, Sasisekharan V (1992) Structure of d(T)n.d(A)n.d(T)n: the DNA triple helix has B-form geometry with C2’-endo sugar pucker. Biochemistry 31:10671–10677PubMedCrossRefGoogle Scholar
  118. Howard FB, Miles HT, Ross PD (1995) The poly(dT).2poly(dA) triple helix. Biochemistry 34:7135–7144PubMedCrossRefGoogle Scholar
  119. Huang CY, Miller PS (1993) Triple helix formation by an oligodeoxyribonucleotide containing N4-(6-aminopyridinyl)-2’-deoxyctyditide. J Am Chem Soc 115:10456–10457CrossRefGoogle Scholar
  120. Huang CY, Bi G, Miller PS (1996) Triplex formation by oligonucleotides containing novel deoxycytidine derivatives. Nucleic Acids Res 24:2606–2613PubMedCrossRefGoogle Scholar
  121. Hunziker J, Priestley ES, Brunar H, Dervan PB (1995) Design of an N7-glycosylated purine nucleoside for recognition of GC base pairs by triple helix formation. J Am Chem Soc 117:2661–2662CrossRefGoogle Scholar
  122. Husler PL, Klump HH (1995) Prediction of pH-dependent properties of DNA triple helices Arch Biochem Biophys 317:46–56Google Scholar
  123. Ing NH, Beekman JM, Kessler DJ, Murphy M, Jayaraman K, Zendegui JG, Hogan ME, O’Malley BW, Tsai MJ (1993) In vivo transcription of a progesterone-responsive gene is specifically inhibited by a triple helix-forming oligonucleotide. Nucleic Acid Res 21:2789–2796PubMedCrossRefGoogle Scholar
  124. Jayasena S, Johnston BH (1992a) Intramolecular triple-helix formation at (PunPyn).(PunPyn) tracts: recognition of alternate strands via Pu.PuPy and Py.PuPy base triplets. Nucleic Acids Res 20:5279–5288CrossRefGoogle Scholar
  125. Jayasena S, Johnston BH (1992b) Oligonucleotide-directed triple helix formation at adjacent oligopurine and oligopyrimidine DNA tracts by alternate strand recognition. Biochemistry 31:320–327CrossRefGoogle Scholar
  126. Jayasena S, Johnston BH (1993) Sequence limitations of triple helix formation by alternate-strand recognition. Biochemistry 32:2800–2807PubMedCrossRefGoogle Scholar
  127. Jetter MC, Hobbs FW (1993) 7,8-Dihydro-8-oxoadenine as a replacement for cytosine in the third strand of triple helices. Triplex formation without hypochromicity. Biochemistry 32:3249–3254PubMedCrossRefGoogle Scholar
  128. Jin R, Breslauer KJ, Jones RA, Gaffney BL (1990) Tetraplex formation of a guanine-containing nanomeric DNA fragment. Science 250:543–544PubMedCrossRefGoogle Scholar
  129. Jin R, Gaffney BL, Wang, C, Jones RA, Breslauer KJ (1992) Thermodynamics and structure of a DNA tetraplex: spectroscopic and calorimetric study of the tetramer complexes of d(TG3T) and d(TG3T2G3T). Proc Natl Acad Sci U S A 89:8832–8836PubMedCrossRefGoogle Scholar
  130. Jin R, Chapman WH Jr, Srinivasan AR, Olson WK, Breslow R, Breslauer KJ (1993) Comparative spectroscopic, calorimetric, and computational studies of nucleic acid complexes with 2’,5“-versus 3’,5”-phosphodiester linkage. Proc Natl Acad Sci U S A 90:10568–10572PubMedCrossRefGoogle Scholar
  131. Johnson KH, Durland RH, Hogan ME (1992) The vacuum UV CD spectra of G.G.0 triplexes. Nucleic Acids Res 20:3859–3864PubMedCrossRefGoogle Scholar
  132. Jones RJ, Swaminathan S, Milligan JF, Wadwani S, Froehler BC, Matteucci MD (1993) Oligonucleotides containing a covalent conformationally restricted phosphodiester analog for high-affinity triple helix formation: the riboacetal inter-nucleotide linkage. J Am Chem Soc 115:9816–9817CrossRefGoogle Scholar
  133. Joshi RR, Ganesh KN (1994) Duplex and triplex directed DNA cleavage by oligonucleotide-Cu(II)/Co(III) metallodesferal conjugates. Biochem Biophys Acta 1201:454–460PubMedCrossRefGoogle Scholar
  134. Kamiya M, Trigoe H, Shindo H, Sarai A (1996) Temperature dependence and sequence specificity of DNA triplex formation: an analysis using isothermal titration calorimetry. J Am Chem Soc 118:4532–4538CrossRefGoogle Scholar
  135. Kandimalla ER, Agrawal S (1994) Single-strand-targeted triplex formation: stability, specificity and RNase H activation properties. Gene 149:115–121PubMedCrossRefGoogle Scholar
  136. Kandimalla ER, Agrawal S (1995a) Single strand targeted triplex formation: parallel-stranded DNA hairpin duplexes for targeting pyrimidine strands. J Am Chem Soc 117:6416–6417CrossRefGoogle Scholar
  137. Kandimalla ER, Agrawal S (1995b) Single strand targeted triplex-formation. Destabilization of guanine quadruplex structures by foldback triplex-forming oligonucleotides. Nucleic Acids Res 23:1068–1074CrossRefGoogle Scholar
  138. Kandimalla ER, Manning AN, Venkataraman G, Sasisekharan V, Agrawal S (1995) Single strand targeted triple helix formation: targeting purine-pyrimidine mixed sequences using abasic linkers. Nucleic Acids Res 23:4510–4517PubMedCrossRefGoogle Scholar
  139. Kessler DJ, Pettitt BM., Cheng YK, Smith SR, Jayaraman K, Vu HM, Hogan ME (1993) Triple helix formation at distant sites: hybrid oligonucleotides containing a polymeric linker. Nucleic Acids Res 21:4810–4815PubMedCrossRefGoogle Scholar
  140. Kibler-Herzog L, Kell B, Zon G, Shinozuka K, Mizan S, Wilson WD (1990) Sequence dependent effects in methylphosphonate deoxyribonucleotide double and triple helical complexes. Nucleic Acids Res 18:3545–3555PubMedCrossRefGoogle Scholar
  141. Kiessling LL, Griffin LC, Dervan PB (1992) Flanking sequence effects within the pyrimidine triple-helix motif characterized by affinity cleaving. Biochemistry 31:2829–2834PubMedCrossRefGoogle Scholar
  142. Kim HG, Miller DM (1995) Inhibition of in vitro transcription by a triplex-forming oligonucleotide targeted to human c-myc P2 promoter. Biochemistry 34:8165–8171PubMedCrossRefGoogle Scholar
  143. Kim SG, Tsukahara S, Yokohama S, Takaku H (1992) The influence of oligodeoxyribonucleotide phosphorothioate pyrimidine strands on triplex stability. FEBS Lett 314:29–32PubMedCrossRefGoogle Scholar
  144. Klink R, Guittet E, Liquer J, Taillandier E, Gouyette C, Huynh-Dinh T (1994) Spectroscopic evidence for an intramolecular RNA triple helix. FEBS Lett 355:297–300CrossRefGoogle Scholar
  145. Klink R, Liquer J, Taillandier E, Gouyette C, Huynh-Dinh T, Guittet E (1995) Structural characterization of an intramolecular RNA triple helix by NMR spectroscopy. Eur J Biochem 233:544–533CrossRefGoogle Scholar
  146. Kochetkova M, Shannon MF (1996) DNA triplex formation selectively inhibits granulocyte-macrophage colony-stimulating factor gene expression in human T cells. J Biol Chem 271:14438–14444PubMedCrossRefGoogle Scholar
  147. Koh JS, Dervan PB (1992) Design of a nonnatural deoxyribonucleoside for recognition of GC base pairs by oligonucleotide-directed triple helix formation. J Am Chem Soc 114:1470–1478CrossRefGoogle Scholar
  148. Koob M, Szybalski W (1990) Cleaving yeast and Escherichia coli genomes at a single site. Science 250:271–273PubMedCrossRefGoogle Scholar
  149. Koob M, Grimes E, Szybalski W (1988) Conferring operator specificity on restriction endonuclease. Science 241:1084–1086PubMedCrossRefGoogle Scholar
  150. Kool ET (1991) Molecular recognition by circular oligonucleotides: increasing the selectivity of DNA binding. J Am Chem Soc 113:6265–6266CrossRefGoogle Scholar
  151. Kopel V, Pozener A, Baran N, Manor H (1996) Unwinding of the third strand of a DNA triple helix, a novel activity of the SV40 large T-antigen helicase. Nucleic Acids Res 24:330–335PubMedCrossRefGoogle Scholar
  152. Koshlap KM, Gillespie P, Dervan PB, Feigon J (1993) Nonnatural deoxyribonucleoside D3 incorporated in an intramolecular DNA triplex binds sequence-specifically by intercalation. J Am Chem Soc 115:7908–7909CrossRefGoogle Scholar
  153. Kovacs A, Kandala JC, Weber KT, Guntaka RV (1996) Triple helix-forming oligonucleotide corresponding to the polypyrimidine sequence in the rat alpha 1(I) collagen promoter specifically inhibits factor binding and transcription. J Biol Chem 271:1805–1812PubMedCrossRefGoogle Scholar
  154. Krawczyk SH, Milligan JF, Wadwani S, Moulds C, Froehler BC, Matteucci MD (1992) Oligonucleotide-mediated triple helix formation using an N3-protonated deoxycytidine analog exhibiting pH-independent binding within the physiological range. Proc Natl Acad Sci U S A 89:3761–3764PubMedCrossRefGoogle Scholar
  155. Laughton CA, Neidle S (1992a) Molecular dynamics simulation of the DNA triple helix d(TC)5.d(GA)5.d(C+T)5. Nucleic Acids Res 20:6535–6541CrossRefGoogle Scholar
  156. Laughton CA, Neidle S (1992b) Prediction of the structure of the Y+.R—.R(+)-type DNA triple helix by molecular modelling. J Mol Biol 223:519–529CrossRefGoogle Scholar
  157. Lavrovsky Y, Stoltz RA, Vlassov VV, Abraham NG (1996) c-fos protooncogene transcription can be modulated by oligonucleotide-mediated formation of triplex structures in vitro. Eur J Biochem 238:582–590PubMedCrossRefGoogle Scholar
  158. Le Doan T, Perrouault L, Praseuth D, Habhoub N, Decoudt JL, Thuong NT, Lhomme J, Helene C (1987) Sequence-specific recognition, photo-crosslinking, and cleavage of the DNA double helix by an oligo-[alpha]-thymidilate covalently linked to an azidoproflavine. Nucleic Acids Res 15:7749–7760PubMedCrossRefGoogle Scholar
  159. Lee JS, Johnson DA, Morgan AR (1979) Complexes formed by (pyrimidine)n.(purine)n DNAs on lowering the pH are three-stranded. Nucleic Acids Res 6:3073–3091PubMedCrossRefGoogle Scholar
  160. Lee JS, Woodsworth ML, Latimer LJP, Morgan AR (1984) Poly(pyrimidine).poly(purine) synthetic DNAs containing 5-methylcytosine form stable triplexes at neutral pH. Nucleic Acids Res 12:6603–6614PubMedCrossRefGoogle Scholar
  161. Lee JS, Latimer L, Hampel KJ (1993) Coralyne binds tightly to both T.A.T- and C.G.C(+)-containing DNA triplexes. Biochemistry 32:5591–5597PubMedCrossRefGoogle Scholar
  162. Lehrman EA, Crothers DM (1977) An ethidium-induced double helix of poly (dA)poly (rU). Nucleic Acids Res 4:1382–1392CrossRefGoogle Scholar
  163. Liberles LS, Dervan PB (1996) Design of artificial sequence-specific DNA bending ligands. Proc Natl Acad Sci U S A 93:9510–9514PubMedCrossRefGoogle Scholar
  164. Lipsett MN (1963) The interactions of poly C and guanine trinucleotide. Biochem Biophys Res Commun 11:224–228CrossRefGoogle Scholar
  165. Lipsett MN (1964) Complex formation between polycytidylic acid and guanine oligonucleotides. J Biol Chem 239:1256–1260PubMedGoogle Scholar
  166. Live DH., Radhakrishnan I, Mirsa V, Patel DJ (1991) Characterization of protonated cytidine in oligonucleotides by nitrogen-15 NMR studies at natural abundance. J Am Chem Soc 113:4687–4688CrossRefGoogle Scholar
  167. Lu M, Guo Q, Kallenbach NR (1993) Thermodynamics of G-tetraplex formation by telomeric DNAs. Biochemistry 32:598–601PubMedCrossRefGoogle Scholar
  168. Macaya RF, Gilbert DE, Malek S, Sinsheimer JS, Feigon J (1991) Structure and stability of X.G.0 mismatches in the third strand of intramolecular triplexes. Science 254:270–274PubMedCrossRefGoogle Scholar
  169. Macaya RF, Schultze P, Feigon J (1992a) Sugar conformations in intramolecular DNA triplexes determined by coupling constants obtained by automated simulation of P.COSY cross peaks. J Am Chem Soc 114:781–783CrossRefGoogle Scholar
  170. Macaya RF, Wang E, Schultze P, Sklenar V, Feigon J (1992b) Proton nuclear magnetic resonance assignments and structural characterization of an intramolecular DNA triplex. J Mol Biol 225:755–773CrossRefGoogle Scholar
  171. Maher LJ III (1992) Inhibition of T7 RNA polymerase initiation by triple-helical DNA complexes: a model for artificial gene repression. Biochemistry 31:7587–75894PubMedCrossRefGoogle Scholar
  172. Maher LJ III, Wold B, Dervan PB (1989) Inhibition of DNA binding proteins by oligonucleotide-directed triple helix formation. Science 245:725–730PubMedCrossRefGoogle Scholar
  173. Maher LJ III, Dervan PB, Wold BJ (1990) Kinetic analysis of oligodeoxyribonucleotide-directed triple-helix formation on DNA. Biochemistry 29:8820–8826PubMedCrossRefGoogle Scholar
  174. Maher LJ III, Dervan PB, Wold BJ (1992) Analysis of promoter-specific repression by triple-helical DNA complexes in a eukaryotic cell-free transcription. Biochemistry 31:70–81PubMedCrossRefGoogle Scholar
  175. Malkov VA, Voloshin ON, Soyfer VN, Frank-Kamnenetskii MD (1993) Cation and sequence effects on stability of intermolecular pyrimidine-purine-purine triplex. Nucleic Acids Res 21:585–591PubMedCrossRefGoogle Scholar
  176. Manzini G, Xodo LE, Gasparotto D, Quadrifoglio F, van der Marel GA, van Boom JH (1990) Triple helix formation by oligopurine-oligopyrimidine DNA fragments. Electrophoretic and thermodynamic behavior. J Mol Biol 213:833–843PubMedCrossRefGoogle Scholar
  177. Marchand C, Bailly C, Nguyen CH, Bisagni E, Garestier T, Helene C, Waring MJ (1996) Stabilization of triple helical DNA by a benzopyridoquinoxaline intercalator. Biochemistry 35:5022–5032PubMedCrossRefGoogle Scholar
  178. Martin JP, Episona M (1993) Protein-induced bending as a transcriptional switch. Science 260:805–807CrossRefGoogle Scholar
  179. Matteucci M, Lin KY, Butcher S, Moulds C (1991) Deoxyoligonucleotides bearing neutral analogs of phosphodiester linkages recognize duplex DNA via triple-helix formation. J Am Chem Soc 113:7767–7768CrossRefGoogle Scholar
  180. Mayfield C, Millar D (1994) Effect of abasic linker substitution on triple helix formation, Spl binding and specificity in an oligonucleotide targeted to the human Ha-ras promoter. Nucleic Acids Res 22:1909–1916PubMedCrossRefGoogle Scholar
  181. Mayfield C, Ebbinghaus S, Gee JE, Jones D, Rodu B, Squibb M, Miller D (1994) Triplex formation by the human Ha-ras promoter inhibits Sp1 binding and in vitro transcription. J Biol Chem 269:18232–18238PubMedGoogle Scholar
  182. McShan WM, Rossen RD, Laughter AH, Trial J, Kessler DJ, Zendegui JG, Hogan ME, Orson FM (1992) Inhibition of transcription of HIV-1 in infected human cells by oligodeoxynucleotides designed to form DNA triple helices. J Biol Chem 267:5712–5721PubMedGoogle Scholar
  183. Mergny JL, Sun JS, Rougee M, Montenay-Garestier T, Barcelo F, Chomilier J, Helene C (1991a) Sequence specificity in triple-helix formation: experimental and theoretical studies of the effect of mismatches on triplex stability. Biochemistry 30:9791–9798CrossRefGoogle Scholar
  184. Mergny JL, Sun JS, Rougee M, Montenay-Garestier T, Helene C (1991b) Intercalation of ethidium bromide into a triple-stranded oligonucleotide. Nucleic Acids Res 19:1521–1526CrossRefGoogle Scholar
  185. Mergny JL, Duval-Valentin G, Nguyen CH, Perrouault L, Faucon B, Rougee M, Montenay-Garestier T, Bisagni C, Helene C (1992) Triple helix-specific ligands. Science 256:1681–1684PubMedCrossRefGoogle Scholar
  186. Mestre B, Jakobs A, Pratviel G, Meunier B (1996) Structure/nuclease activity relationships of DNA cleavers based on cationic metalloporphyrin-oligonucleotide conjugates. Biochemistry 35:9140–9149PubMedCrossRefGoogle Scholar
  187. Michel J, Toulme JJ, Vercauteren J, Moreau S (1996) Quinazoline-2,4(1H,3H)-dione as a substitute for thymine in triple-helix forming oligonucleotides: a reassessment. Nucleic Acids Res 24:1127–1135PubMedCrossRefGoogle Scholar
  188. Miller PS, Cushman CD (1993) Triplex formation by oligodeoxyribonucleotides involving the formation of X.U.A triads. Biochemistry 32:2999–3004PubMedCrossRefGoogle Scholar
  189. Miller PS, Dreon N, Pulford SM, McParland KB (1980) Oligothymidylate analogues having stereoregular, alternating methylphosphonate/phosphodiester backbones. Synthesis and physical studies. J Biol Chem 255:9659–9665PubMedGoogle Scholar
  190. Miller PS, McParland KB, Jayaraman K, Ts’o POP (1981) Biochemical and biological effects of nonionic nucleic acid methylphosphonate. Biochemistry 20:1874–1880PubMedCrossRefGoogle Scholar
  191. Miller PS, Bhan P, Cushman CD, Trapane TL (1992) Recognition of a guaninecytosine base pair by 8-oxoadenine. Biochemistry 31:6788–6793PubMedCrossRefGoogle Scholar
  192. Miller PS, Bi G, Kipp SA, Fok V, DeLong RK (1996) Triplex formation by a psoralenconjugated oligodeoxyribonucleotide containing the base analog 8-oxo-adenine. Nucleic Acids Res 24:730–736PubMedCrossRefGoogle Scholar
  193. Milligan JF, Krawczyk SH, Wadwani S, Matteucci MD (1993) An anti-parallel triple helix motif with oligodeoxynucleotides containing 2’-deoxyguanosine and 7deaza-2’-deoxyxanthosine. Nucleic Acids Res 21:327–333PubMedCrossRefGoogle Scholar
  194. Mohan V, Smith PE, Pettitt BM (1993) Evidence for a new spine of hydration: solvation of DNA triple helixes. J Am Chem Soc 115:9297–9298CrossRefGoogle Scholar
  195. Mooren MM, Pulleyblank DE, Wijmenga SS, Blommers MJ, Hilbers CW (1990) Polypurine/polypyrimidine hairpins form a triple helix structure at low pH. Nucleic Acids Res 18:6523–6539PubMedCrossRefGoogle Scholar
  196. Moser HE, Dervan PB (1987) Sequence-specific cleavage of double helical DNA by triplex formation. Science 238:645–650PubMedCrossRefGoogle Scholar
  197. Mouscadet JF, Carteau S, Goulaouic H, Subra F, Auclair C (1994a) Triplex-mediated inhibition of HIV DNA integration in vitro. J Biol Chem 269:21635–21638Google Scholar
  198. Mouscadet JF, Ketterle C, Goulaouic H, Carteau S, Subra F, Bret ML, Auclair C (1994b) Triple helix formation with short oligonucleotide-intercalator conjugates matching the HIV-1 U3 LTR promoter end sequence. Biochemistry 33:4187–4196CrossRefGoogle Scholar
  199. Musso M, Van Dyke MW (1995) Polyamine effects on purine-purine-pyrimidine triple helix formation by phosphodiester and phosphorothioate oligodeoxyribonucleotides. Nucleic Acids Res 23:2320–2327PubMedCrossRefGoogle Scholar
  200. Neurath MF, Max EE, Strober W (1995) PaxS (BSAP) regulates the murine immunoglobulin 3’ alpha enhancer by suppressing binding of NF-alpha P, a protein that controls heavy chain transcription. Proc Natl Acad Sci U S A 92:5336–5340PubMedCrossRefGoogle Scholar
  201. Noonberg SB, Scott GK, Hunt A, Hogan ME, Benz CC (1994a) Inhibition of transcription factor binding to the HER2 promoter by triplex-forming oligonucleotide. Gene 149:123–126CrossRefGoogle Scholar
  202. Noonberg SB, Scott GK, Hunt CA, Benz CC (1994b) Detection of triplex-forming RNA oligonucleotides by triplex blotting. Biotechniques 16:1070–1072Google Scholar
  203. Noonberg SB, Francois JC, Garestier T, Helene C (1995) Effect of competing self-structure on triplex formation with purine-rich oligodeoxynucleotides containing GA repeats. Nucleic Acids Res 23:1956–1963PubMedCrossRefGoogle Scholar
  204. Olivas WM, Maher LJ III (1994) DNA recognition by alternate strand triple helix formation: affinities of oligonucleotides for a site in the human p53 gene. Biochemistry 33:983–991PubMedCrossRefGoogle Scholar
  205. Olivas WM, Maher LJ III (1995a) Overcoming potassium-mediated triplex inhibition. Nucleic Acids Res 23:1936–1941CrossRefGoogle Scholar
  206. Olivas WM, Maher LJ III (1995b) Competitive triplex/quadruplex equilibria involving guanine-rich oligonucleotides. Biochemistry 34:278–284CrossRefGoogle Scholar
  207. Olivas WM, Maher II LJ (1996) Binding of DNA oligonucleotides to sequences in the promoter of the human bc1–2 gene. Nucleic Acids Res 24:1758–1764PubMedCrossRefGoogle Scholar
  208. Ono A, Chen CH, Kan LS (1991a) DNA triplex formation of oligonucleotide analogue consisting of linker groups and octamer segments that have opposite sugar-phosphate backbone polarities. Biochemistry 30:9914–9921CrossRefGoogle Scholar
  209. Ono A, Ts’o POP, Kan LS (1991b) Triplex formation of oligonucleotides containing 2’0-methylpseudoisocytidine in substitution for 2’-deoxycytidine. J Am Chem Soc 113:4032–4033CrossRefGoogle Scholar
  210. Ono A, Ts’o POP, Kan LS (1992) Triplex formation of an oligonucleotide containing 2’-O-methylpseudoisocytidine with a DNA duplex at neutral pH. J Org Chem 57:3225–3231CrossRefGoogle Scholar
  211. Orson FM, Thomas DW, McShan WM, Kessler DJ, Hogan ME (1991) Oligonucleotide inhibition of IL2R alpha mRNA transcription by promoter region collinear triple helix formation in lymphocytes. Nucleic Acid Res 19:3435–3441PubMedCrossRefGoogle Scholar
  212. Orson FM, Kinsey BM, McShan WM (1994) Linkage structures strongly influence the binding cooperativity of DNA intercalators conjugated to triplex forming oligonucleotides. Nucleic Acid Res 22:479–484PubMedCrossRefGoogle Scholar
  213. Ouali M, Letellier R, Sun JS, Akhebat A, Adnet F, Liquier J, Taillandier E (1993a) Determination of G*G:C triple-helix structure by molecular modeling and vibrational spectroscopy. J Am Chem Soc 115:4264–4270CrossRefGoogle Scholar
  214. Ouali M, Letellier R, Sun JS, Adnet F, Liquier J, Sun JS, Lavery R, Taillandier E (1993b) A possible family of B-like triple helix structures: comparison with the Arnott A-like triple helix. Biochemistry 32:2098–2103CrossRefGoogle Scholar
  215. Park YW, Breslauer KJ (1992) Drug binding to higher ordered DNA structures: netropsin complexation with a nucleic acid triple helix. Proc Natl Acad Sci U S A 89:6653–6657PubMedCrossRefGoogle Scholar
  216. Pegg AE (1988) Polyamine metabolism and its importance in neoplastic growth and a target for chemotherapy. Cancer Res 48:759–774PubMedGoogle Scholar
  217. Pei D, Corey DR, Schultz PG (1990) Site-specific cleavage of duplex DNA by a semisynthetic nuclease via triple-helix formation. Proc Natl Acad Sci U S A 87:9858–9862PubMedCrossRefGoogle Scholar
  218. Perrouault L, Asseline U, Rivalle C, Thuong NT, Bisagni E, Giovannangeli C, Doan TL, Helene C (1990) Sequence-specific artificial photo-induced endonucleases based on triple helix-forming oligonucleotides. Nature 344:358–360.PubMedCrossRefGoogle Scholar
  219. Pilch DS, Breslauer KJ (1994) Ligand-induced formation of nucleic acid triple helices. Proc Natl Acad Sci U S A 91:9332–9336PubMedCrossRefGoogle Scholar
  220. Pilch DS, Levenson C, Shafer RH (1990a) Structural analysis of the (dA)10.2(dT)10 triple helix. Proc Natl Acad Sci U S A 87:1942–1946CrossRefGoogle Scholar
  221. Pilch DS, Brousseau R, Shafer RH (1990b) Thermodynamics of triple helix formation: spectrophotometric studies on the d(A)10.2d(T) and d(C+3T4C+3).d(G3A4G3).d(C3T4C3) triple helices. Nucleic Acids Res 18:5743–5750CrossRefGoogle Scholar
  222. Pilch DS, Levenson C, Shafer RH (1991) Structure, stability, and thermodynamics of a short intermolecular purine-purine-pyrimidine triple helix. Biochemistry 30:6081–6087PubMedCrossRefGoogle Scholar
  223. Pilch DS, Waring MJ, Sun JS, Rougee M, Nguyen CH, Bisagni E, Garestier T, Helene C (1993) Characterization of a triple helix-specific ligand. BePI(3-methoxy7H-8-methyl-11-[(3’-amino)propylamino]-benzo[e]pyrido[4,3-b]indole) intercalators into both double-helical and triple-helical DNA. J Mol Biol 232:926–946PubMedCrossRefGoogle Scholar
  224. Plum GE, Breslauer KJ (1995) Thermodynamics of an intramolecular DNA triple helix: a calorimetric and spectroscopic study of the pH and salt dependence of thermally induced structural transition. J Mol Biol 248:679–695PubMedCrossRefGoogle Scholar
  225. Plum GE, Park YW, Singleton SF, Dervan PB, Breslauer KJ (1990) Thermodynamic characterization of the stability and the melting behavior of a DNA triplex: a spectroscopic and calorimetric study. Proc Natl Acad Sci U S A 87:9436–9440PubMedCrossRefGoogle Scholar
  226. Porumb H, Gousset H, Letellier R, Salle V, Briane D, Vassa J, Amor-Gueret M, Israel L, Taillandier E (1996) Temporary ex vivo inhibition of the expression of the human oncogene HER2 (NEU) by a triple helix-forming oligonucleotide Cancer Res 56:515–522Google Scholar
  227. Postel EH (1992) Modulation of c-myc transcription by triplex formation. Ann N Y Acad Sci 660:57–63PubMedCrossRefGoogle Scholar
  228. Postel EH, Flint SJ, Kessler DJ, Hogan ME (1991) Evidence that a triplex-forming oligodeoxynucleotide binds to the c-myc promoter in HeLa cells, thereby reducing c-myc mRNA levels. Proc Natl Acad Sci U S A 88:8227–8231PubMedCrossRefGoogle Scholar
  229. Potaman VN, Sinden RR (1995) Stabilization of triple-helical nucleic acids by basic oligopeptide. Biochemistry 34:14885–14892PubMedCrossRefGoogle Scholar
  230. Povsic TJ, Dervan PB (1989) Triple helix formation by oligonucleotides on DNBA extended to the physiological pH. J Am Chem Soc 111:3059–3061CrossRefGoogle Scholar
  231. Povsic TJ, Dervan PB (1990) Sequence specific alkylation of double-helical DNA by oligonucleotide-directed triple-helix formation. J Am Chem Soc 112:94–28CrossRefGoogle Scholar
  232. Povsic TJ, Strobel SA, Dervan PB (1992) Sequence-specific double-strand alkylation and cleavage of DNA mediated by triple helix formation. J Am Chem Soc 114:5943–5941CrossRefGoogle Scholar
  233. Prakash G, Kool ET (1991) Molecular recognition by circular oligonucleotides. Strong binding of single-stranded DNA and RNA. J Chem Soc Chem Commun 1991:1161–1163CrossRefGoogle Scholar
  234. Prakash G, Kool ET (1992) Structural effects in the recognition of DNA by circular oligonucleotides. J Am Chem Soc 114:3523–3527CrossRefGoogle Scholar
  235. Praseuth D, Doan TL, Chassignol M, Decout JL, Habhoub N, Lhomme J, Thuong NT, Helene C (1988a) Sequence-targeted photosensitized reactions in nucleic acids by oligo-alpha-deoxynucleotides and oligo-beta-deoxynucleotided covalently linked to proflavin. Biochemistry 27:3031–3038CrossRefGoogle Scholar
  236. Praseuth D, Perrouault L, Doan TL, Chassignol M, Thuong NT, Helene C (1988b) Sequence-specific binding and photocrosslinking of alpha and beta oligodeoxynucleotides to the major groove of DNA via triple-helix formation. Proc Natl Acad Sci U S A 85:1349–1353CrossRefGoogle Scholar
  237. Priestley ES, Dervan PB (1995) Sequence composition effects on the energetics of triple helix formation by oligonucleotides containing a designed mimic of protonated cytosine. Am Chem Soc 117:4761–4765CrossRefGoogle Scholar
  238. Radhakrishnan I, Patel DJ (1992a) Solution conformation of a G:TA triple in intramolecular pyrimidine:purine:pyrimidine DNA triplexes. J Am Chem Soc 114:6913–6915CrossRefGoogle Scholar
  239. Radhakrishnan I, Patel DJ (1992b) Three dimensional homonuclear NOESY-TOCSY of an intramolecular pyrimidine.purine.pyrimidine DNA triplex containing a central G.TA triple: nonexchangeable proton assignments and structural implications. Biochemistry 31:2514–2523CrossRefGoogle Scholar
  240. Radhakrishnan I, Patel DJ (1993) NMR structural studies on a nonnatural deoxyribonucleoside which mediates recognition of GC base pairs in pyrimidinepurine-pyrimidine DNA triplexes. Biochemistry 32:11228–11234PubMedCrossRefGoogle Scholar
  241. Radhakrishnan I, Patel DJ (1994a) Solution structure and hydration patterns of a pyrimidine.purine.pyrimidine DNA triplex containing a novel T.CG base-triple. J Mol Biol 241:600–619CrossRefGoogle Scholar
  242. Radhakrishnan I, Patel DJ (1994b) DNA triplexes: solution structures, hydration sites, energetics, interactions, and function. Biochemistry 33:11406–11416CrossRefGoogle Scholar
  243. Radhakrishnan I, Gao X, de los Santos C, Live D, Patel DJ (1991a) NMR structural studies of intramolecular (Y+)n.(R+)n.(Y—)n DNA triples in solution. Imino and amino proton and nitrogen markers of G.TA base triple formation. Biochemistry 30:9022–9030CrossRefGoogle Scholar
  244. Radhakrishnan I, Patel DJ, Gao X (1991b) NMR assignment strategy for DNA protons through three-dimensional proton-proton connectivities. Application to an intramolecular DNA triplex. J Am Chem Soc 113:8542–8544CrossRefGoogle Scholar
  245. Radhakrishnan I, de los Santos C, Live D, Patel DJ (1991c) Nuclear magnetic resonance structural studies of intramolecular purine.purine.pyrimidine DNA triplexes in solution. Base triple pairing alignments and strand direction. J Mol Biol 221:1403–1418Google Scholar
  246. Radhakrishnan I, de los Santos C, Patel DJ (1993) Nuclear magnetic resonance structural studies of A.AT base triple alignments in intramolecular purine.purine.pyrimidine DNA triplexes in solution. J Mol Biol 234:188–197PubMedCrossRefGoogle Scholar
  247. Raha M, Wang G, Seidman MM, Glazer PM (1996) Mutagenesis by thirdstrand-directed psoralen adducts in repair-deficient human cells: high frequency and altered spectrum in a xeroderma pigmentosum variant. Proc Natl Acad Sci U S A 93:2941–2946PubMedCrossRefGoogle Scholar
  248. Rajagopal P, Feigon J (1989a) Triple-strand formation in the homopurine:homopyrimidine DNA oligonucleotides d(G-A)4 and d(T-C)4. Nature 339:637–640CrossRefGoogle Scholar
  249. Rajagopal P, Feigon J (1989b) NMR studies of triple-strand formation from the homopurine-homopyrimidine deoxyribonucleotides d(GA)4 and d(TC)4. Biochemistry 28:7859–7870CrossRefGoogle Scholar
  250. Rando RL, DePaolis L, Durland RH, Jayaraman K, Kessler DJ, Hogan ME (1994) Inhibition of T7 and T3 RNA polymerase directed transcription elongation in vitro. Nucleic Acids Res 22:678–685PubMedCrossRefGoogle Scholar
  251. Rao TS, Durland RH, Sethe DM, Myrick MA, Bodepudi V, Revankar GR (1995) Incorporation of 2’-deoxy-6-thioguanosine into G-rich oligodeoxyribonucleotides inhibits G-tetrad formation and facilitates triplex formation. Biochemistry 34:765–772PubMedCrossRefGoogle Scholar
  252. Reardon JT, Spielman P, Huang JC, Sastry S, Sanear A, Hearst JE (1991) Removal of psoralen monoadducts and crosslinks by human cell free extracts. Nucleic Acids Res 19:4623–4629PubMedCrossRefGoogle Scholar
  253. Reddoch JF, Miller DM (1995) Inhibition of nuclear protein binding to two sites in the murine c-myc promoter by intermolecular triplex formation. Biochemistry 34:7659–7667PubMedCrossRefGoogle Scholar
  254. Rees WA, Keller RW, Vesenka JD, Yang G, Bustamante C (1993) Evidence of DNA bending in transcriptional complexes imaged by scanning force microscopy. Science 260:1646–1649PubMedCrossRefGoogle Scholar
  255. Reynolds MA, Arnold LJ Jr, Almazan MT, Beck TA, Hogrefe RI, Metzeler MD, Stoughton SR, Tseng BY, Trapane TL, Ts’o POP, Woolf TM (1994) Triple strand forming methylphosphonate oligodeoxynucleotides targeted to mRNA efficiently block protein synthesis. Proc Natl Acad Sci U S A 91:12433–12437PubMedCrossRefGoogle Scholar
  256. Roberts RW, Crothers DM (1991) Specificity and stringency in DNA triplex formation. Proc Natl Acad Sci U S A 88:9397–9401PubMedCrossRefGoogle Scholar
  257. Roberts RW, Crothers DM (1992) Stability and properties of double and triple helices:dramatic effects of RNA or DNA backbone composition. Science 258:1463–1466PubMedCrossRefGoogle Scholar
  258. Roberts RW, Crothers DM (1996) Prediction of the stability of DNA triplexes.. Proc Natl Acad Sci U S A 93:4320–4325PubMedCrossRefGoogle Scholar
  259. Robles J, Rajur SB, McLaughlin LW (1996) A parallel-stranded DNA triplex tethering a Hoechst 33258 results in complex stabilization by simultaneous major groove binding and minor groove binding. J Am Chem Soc 118:5820–5821CrossRefGoogle Scholar
  260. Rougee M, Faucon B, Mergny JL, Barcelo F, Giovannangeli C, Garestier T, Helene C (1992) Kinetics and thermodynamics of triple-helix formation: effects of ionic strength and mismatches. Biochemistry 31:9269–9278PubMedCrossRefGoogle Scholar
  261. Roy O (1994) Triple helix formation interferes with the transcription and hinged DNA structure of the interferon-inducible 6–616 gene promoter. Eur J Biochem 220:493–503PubMedCrossRefGoogle Scholar
  262. Rumney S IV, Kool ET (1995) Structural optimization of non-nucleotide loop replacement for duplex and triplex DNA. J Am Chem Soc 117:5635–5646PubMedCrossRefGoogle Scholar
  263. Samadashwily GM, Mirkin SM (1994) Trapping DNA polymerases using triplex-forming oligonucleotides Gene 149:127–136Google Scholar
  264. Samadashwily GM, Dayn A, Mirkin SM (1993) Suicidal nucleotide sequence for DNA polymerization. EMBO J 12:4975–4983PubMedGoogle Scholar
  265. Sandor Z, Bredberg A (1994) Repair of triple helix directed psoralen adducts in human cells. Nucleic Acids Res 22:2051–2056PubMedCrossRefGoogle Scholar
  266. Sanger (1984) Principles of Nucleic Acids Structures. Springer, Berlin Heidelberg New YorkCrossRefGoogle Scholar
  267. Sawadogo M, Roder RG (1985) Factors involved in specific transcription by human polymerase II: analysis by a rapid and quantitative in vitro assay. Proc Natl Acad Sci U S A 82:4394–4398PubMedCrossRefGoogle Scholar
  268. Scaggiante B, Morassuti C, Tolazzi G, Michelutti A, Baccarani M, Quadrifoglio F (1994) Effect of unmodified triple helix-forming oligodeoxyribonucleotide targeted to human multidrug-resistance gene mdrl in MDR cancer cells. FEBS Lett 352:380–384PubMedCrossRefGoogle Scholar
  269. Scaria PV, Shafer RH (1991) Binding of ethidium bromide to a DNA triple helix. Evidence for intercalation. J Biol Chem 266:5417–5423PubMedGoogle Scholar
  270. Scaria PV, Shafer RH (1996) Calorimetric analysis of triple helices targeted to the d(G3A4G3).d(C3T4C3) duplex. Biochemistry 35:10985–10994PubMedCrossRefGoogle Scholar
  271. Scaria PV, Shire SJ, Shafer RH (1992) Quadruplex structure of d(G3T4G3) stabilized by K’ or Na’ is an asymmetric hairpin dimer. Proc Natl Acad Sci U S A 89:10336–10340PubMedCrossRefGoogle Scholar
  272. Scaria PV, Will S, Levenson C, Shafer RH (1995) Physicochemical studies of the d(G3T4G3).d(G3A4G3).d(C3T4C3) triple helix. J Biol Chem 270:7295–7303PubMedCrossRefGoogle Scholar
  273. Semerad CL, Maher LJ III (1994) Exclusion of RNA strands from a purine motif triple helix. Nucleic Acids Res 22:5321–5325PubMedCrossRefGoogle Scholar
  274. Sen D, Gilbert W (1990) A sodium-potassium switch in the formation of four stranded G4 DNA. Nature 344:410–414PubMedCrossRefGoogle Scholar
  275. Shaw JP, Kent K, Bird J, Fishback J, Froehler B (1991a) Modified deoxyoligonucleotide stable to exonuclease degradation in serum. Nucleic Acids Res 19:747–750CrossRefGoogle Scholar
  276. Shaw JP, Milligan JF, Krawczyk SH, Matteucci M (1991b) Specific, high efficiency, triple-helix-mediated cross-linking to duplex DNA. J Am Chem Soc 113:77–65Google Scholar
  277. Shimizu M, Inoue H, Ohtsuka E (1994) Detailed study of sequence-specific DNA cleavage of triplex-forming oligonucleotides linked to 1,10-phenanthroline. Biochemistry 33:606–613PubMedCrossRefGoogle Scholar
  278. Shimizu M, Morioka H, Inoue H, Ohtsuka E (1996) Triplex-mediated cleavage of DNA by 1,10-phenanthroline-linked 2’-O-methy RNA. FEBS Lett 384:207–210PubMedCrossRefGoogle Scholar
  279. Shin C, Koo HS (1996) Helical periodicity of GA-alternating triple-stranded DNA. Biochemistry 35:968–972PubMedCrossRefGoogle Scholar
  280. Shindo H, Trigoe H, Sarai A (1993) Thermodynamic and kinetic studies of DNA triplex formation of an oligopyrimidine and a matched duplex by filter binding assay. Biochemistry 32:8963–8969PubMedCrossRefGoogle Scholar
  281. Shore D, Langowski J, Baldwin R (1981) DNA flexibility studied by covalent closure of short fragments into circles. Proc Natl Acad Sci U S A 78:4833–4837PubMedCrossRefGoogle Scholar
  282. Singleton SF, Dervan PB (1992a) Influence of pH on the equilibrium association constants for oligodeoxyribonucleotide-directed triple helix formation at single DNA site. Biochemistry 31:10995–11003CrossRefGoogle Scholar
  283. Singleton SF, Dervan PB (1992b) Thermodynamics of oligodeoxyribonucleotidedirected triple helix formation: an analysis using quantitative affinity cleavage titration. J Am Chem Soc 114:6957–6965CrossRefGoogle Scholar
  284. Singleton SF, Dervan PB (1993) Influence of pH on the equilibrium association constants for oligodeoxyribonucleotide-directed triple helix formation at single DNA sites. Biochemistry 32:13171–13179PubMedCrossRefGoogle Scholar
  285. Singleton SF, Dervan PB (1994) Temperature dependence of the energetics of oligonucleotide-directed triple-helix formation at a single DNA site. J Am Chem Soc 116:10376–10382CrossRefGoogle Scholar
  286. Sklenar V, Feigon J (1990) Formation of a stable triplex from a single DNA strand. Nature 345:836–838PubMedCrossRefGoogle Scholar
  287. Skoog JU, Maher U III (1993a) Repression of bacteriophage promoters by DNA and RNA oligonucleotides. Nucleic Acids Res 21:2131–2138CrossRefGoogle Scholar
  288. Skoog JU, Maher U III (1993b) Relief of triple-helix-mediated promoter inhibition by elongating RNA polymerases. Nucleic Acids Res 21:4055–4058CrossRefGoogle Scholar
  289. Song CS, Jung MH, Supakar PC, Chen S, Vellanoweth RL, Chatterjee B, Roy AK (1995) Regulation of androgen action by receptor gene inhibition. Ann N Y Acad Sci 761:97–108PubMedCrossRefGoogle Scholar
  290. Stilz HU, Dervan PB (1993) Specific recognition of CG base pairs by 2deoxynebularine within the purine.purine.pyrimidine triple-helix motif. Biochemistry 32:2177–2185PubMedCrossRefGoogle Scholar
  291. Stonehouse TJ, Fox KR (1994) DNase I footprinting of triple helix formation at polypurine tracts by acridine-linked oligopyrimidines: stringency, structural changes and interaction with minor groove binding ligands. Biochem Biophys Acta 1218:322–330PubMedCrossRefGoogle Scholar
  292. Strobel SA, Dervan PB (1990) Site-specific cleavage of a yeast chromosome by oligonucleotide-directed triple-helix formation. Science 249:73–75PubMedCrossRefGoogle Scholar
  293. Strobel SA, Dervan PB (1991) Single-site enzymatic cleavage of yeast genomic DNA mediated by triple helix formation. Nature 350:172–174PubMedCrossRefGoogle Scholar
  294. Strobel SA, Moser HE, Dervan PB (1988). Double strand cleavage of genomic DNA at a single site by triple helix formation. J Am Chem Soc 110:7927–7929CrossRefGoogle Scholar
  295. Strobel SA, Doucette-Stamm LA, Riba L, Housman DE, Dervan PB (1991) Site-specific cleavage of human chromosome 4 mediated by triple-helix formation. Science 254:1639–1642PubMedCrossRefGoogle Scholar
  296. Sun JS, Lavery R (1992) Strand orientation of [alpha]-oligodeoxynucleotides in triple helix structures: dependence on nucleotide sequence. J Mol Recognit 5:93–98PubMedCrossRefGoogle Scholar
  297. Sun JS, Francois JC, Montenay-Garestier T, Saison-Behmoaras T, Roig V, Thuong NT, Helene C (1989) Sequence specific intercalating agents: intercalation at specific sequences on duplex DNA via major groove recognition by oligonucleotideintercalator conjugates. Proc Natl Acad Sci U S A 86:9198–9202PubMedCrossRefGoogle Scholar
  298. Sun JS, Giovannangeli C, Francois JC, Kurfurst R, Montenay-Garestier T, Asseline U, Saison-Behmoaras T, Thuong NT, Helene C (1991) Triple-helix formation by alpha oligodeoxynucleotides and alpha oligodeoxynucleotide-intercalator conjugates. Proc Natl Acad Sci U S A 88:6023–6027PubMedCrossRefGoogle Scholar
  299. Svinarchuk F, Monnot M, Merle A, Malvy C, Fermandjian S. (1995a) Investigation of the intracellular stability and formation of a triple helix formed with a short purine oligonucleotide targeted to the murine c-pim-1 proto-oncogene. Nucleic Acid Res 23:3831–3836CrossRefGoogle Scholar
  300. Svinarchuk F, Paoletti J, Malvy C (1995b) An unusually stable purine(purinepyrimidine) short triplex. The third strand stabilized double-stranded. DNA J Biol Chem 270:14068–14071Google Scholar
  301. Szewczyk JW, Baird EE, Dervan PB (1996) Cooperative triple-helix formation via sequence specific minor groove dimerization domain. J Am Chem Soc 118:6778–6779CrossRefGoogle Scholar
  302. Tabor CW, Tabor H (1984) Polyamines. Annu Rev Biochem 53:749–791CrossRefGoogle Scholar
  303. Takasugi M, Guendouz A, Chassignol M, Decout JL, Lhomme J, Thuong NT, Helene C (1991) Sequence-specific photo-induced cross-linking of the two strands of double-helical DNA by a psoralen covalently linked to a triple helix-forming oligonucleotide. Proc Natl Acad Sci U S A 88:5602–5606PubMedCrossRefGoogle Scholar
  304. Thomas T, Thomas TJ (1993) Selectivity of polyamines in triplex DNA stabilization. Biochemistry 32:14068–14074PubMedCrossRefGoogle Scholar
  305. Thomas TJ, Faaland CA, Gallo MA, Thomas T (1995) Suppression of c-myc oncogene expression by a polyamine-complexed triplex forming oligonucleotide in MCF-7 breast cancer cells. Nucleic Acid Res 23:3594–3599PubMedCrossRefGoogle Scholar
  306. Trapane TL, Hogrefe RI, Reynolds MA, Kan LS, Ts’o POP (1996) Interstrand complex formation of purine oligonucleotides and their nonionic analogs: the model system of d(AG)8 and its complement d(CT)8. Biochemistry 35:5495–5508PubMedCrossRefGoogle Scholar
  307. Tsuboi M (1969) Application of infrared spectroscopy to structure studies of nucleic acids II. Assignments of the absorption bands. Appl Spectrosc Rev 3:54–55Google Scholar
  308. Tu GC, Cao QN, Israel Y (1995) Inhibition of gene expression by triple helix formation in hepatoma cells. J Biol Chem 270:28402–28407PubMedCrossRefGoogle Scholar
  309. Tuite E, Norden B (1995) Intercalative interactions of ethidium dyes with triplex structures. Bioorg Med Chem 3:701–711PubMedCrossRefGoogle Scholar
  310. Tung CH, Breslauer KJ, Stein S (1993) Polyamine-linked oligonucleotides for DNA triple helix formation. Nucleic Acids Res 21:5489–5494PubMedCrossRefGoogle Scholar
  311. Tung CH, Breslauer KJ, Stein S (1996) Stabilization of DNA triple-helix formation by appended cationic peptides. Bioconjug Chem 7:529–531PubMedCrossRefGoogle Scholar
  312. Uhlmann E, Peyman A (1990). Chem Rev 90:544CrossRefGoogle Scholar
  313. Umemoto K, Sarma MH, Gupta G, Luo J, Sarma RH (1990) Structure and stability of a DNA triple helix in solution: NMR studies on d(T)6:d(A)6:d(T)6 and its complex with a minor groove binding drug. J Am Chem Soc 112:4539–4545CrossRefGoogle Scholar
  314. van Dongen MJP, Heus HA, Wymenga SS, van der Marel GA, van Boom JH, Hilbers CW (1996) Unambiguous structure of characterization of a DNA-RNA triple helix by 15N- and 13C-filtered NOESY spectroscopy. Biochemistry 35:1733–1739PubMedCrossRefGoogle Scholar
  315. Van Meervelt L, Vlieghe D, Dautant A, Gallois B, Precigoux G, Akennard D (1995) High-resolution structure of a DNA helix forming (C.G)*G base triplets. Nature 374:742–744PubMedCrossRefGoogle Scholar
  316. Vasquez KM, Wensel, TG, Hogan ME, Wilson JH (1995) High affinity triple helix formation by synthetic oligonucleotides at a site within a selectable mammalian gene. Biochemistry 34:7243–7351PubMedCrossRefGoogle Scholar
  317. Vasquez KM, Wensel TG, Hogan ME, Wilson JH (1996) High efficiency triple-helix mediated photo-cross-linking at a target site within a selectable mammalian gene. Biochemistry 35:10712–10719PubMedCrossRefGoogle Scholar
  318. Vigneswaran N, Mayfield CA, Rodu B, James R, Kim HG, Miller DM (1996) Influence of GC and AT specific DNA minor groove binding drugs on intermolecular triple helix formation in the human c-Ki-ras promoter. Biochemistry 35:1106–1114PubMedCrossRefGoogle Scholar
  319. Vlassov VV, Gaidamakov SA, Zarytova VF, Knorre DG, Levina AS, Nekona AA, Podust LM, Fedorova OS (1988) Sequence-specific chemical modification of double-stranded DNA with alkylating oligodeoxyribonucleotide derivatives. Gene 72:313–322PubMedCrossRefGoogle Scholar
  320. Vlieghe D, Meervelt LV, Dautant A, Gallois B, Precigoux G, Kennard 0 (1996) Parallel and antiparallel (G:GC)2 triple helix fragment in a crystal structure. Science 273:1702–1705PubMedCrossRefGoogle Scholar
  321. Vo T, Wang S, Kool ET (1995) Targeting pyrimidine single strands by triple helix formation: structural optimization of binding. Nucleic Acids Res 23:2937–2944PubMedCrossRefGoogle Scholar
  322. Volker J, Botes DP, Lindsey GG, Klump HH (1993) Energetics of a stable intramo-lecular DNA triple helix formation. J Mol Biol 230:1278–1290PubMedCrossRefGoogle Scholar
  323. von Krosigk U, Benner SA (1995) pH-independent triple helix formation by an oligonucleotide containing a pyrazine donor-donor-acceptor base. J Am Chem Soc 117:5361–5362CrossRefGoogle Scholar
  324. Wang G, Glazer PM (1995) Altered repair of targeted psoralen photoadducts in the context of an oligonucleotide-mediated triple helix. J Biol Chem 270:22595–22601PubMedCrossRefGoogle Scholar
  325. Wang S, Kool ET (1994a) Circular RNA oligonucleotides. Synthesis, nucleic acid binding properties, and a comparison with circular DNAs. Nucleic Acids Res 22:2326–2333CrossRefGoogle Scholar
  326. Wang S, Kool ET (1994b) Recognition of single-stranded nucleic acids by triplex formation. The binding of a pyrimidine-rich sequence. J Am Chem Soc 116:8857–8858CrossRefGoogle Scholar
  327. Wang S, Kool ET (1995) Relative stabilities of triple helices composed of combinations of DNA, RNA, and 2’-O-methyl-RNA backbones: chimeric circular oligonucleotides as probes. Nucleic Acids Res 23:1157–1164PubMedCrossRefGoogle Scholar
  328. Wang E, Malek S, Feigon J (1992) Structure of a G.T.A triplet in an intramolecular DNA triplex. Biochemistry 31:4838–4846PubMedCrossRefGoogle Scholar
  329. Wang Q, Tsukahara S, Yamakawa H, Takai K, Takaku H (1994) pH-independent inhibition of restriction endonuclease cleavage via triple helix formation by oligonucleotides containing 8-oxo-2’-deoxyadenosine. FEBS Lett 355:11–14PubMedCrossRefGoogle Scholar
  330. Wang S, Friedman A, Kool ET (1995) Origins of high sequence selectivity: a stopped-flow kinetics study of DNA/RNA hybridization by duplex-and triplex-forming oligonucleotides. Biochemistry 34:9774–9784PubMedCrossRefGoogle Scholar
  331. Wang E, Koshlap KM, Gillespie P, Dervan PB, Feigon J (1996a) Solution structure of a pyrimidine-purine-pyrimidine triplex containing the sequence-specific intercalating no-natural base D3. J Mol Biol 257:1052–1069CrossRefGoogle Scholar
  332. Wang G, Seidman MM, Glazer PM (1996b) Mutagenesis in mammalian cells induced by triple helix formation and transcription-coupled repair. Science 271:802–805CrossRefGoogle Scholar
  333. Ward B (1996) Type IIS restriction enzyme footprinting I. Measurement of a triple helix dissociation constant with Eco57I at 251 C. Nucleic Acids Res 24:2435–2440PubMedCrossRefGoogle Scholar
  334. Waring MJ (1974a) Stabilization of two-stranded ribohomopolymer helices and desta-bilization of a three-stranded helix by ethidium bromide. Biochem J 143:484–486 Waring MJ (1974b). J Phys Chem 143:483–486Google Scholar
  335. Washbrook E, Fox KR (1994) Comparison of antiparallel A.AT and T.AT triplets within an alternate strand DNA triple helix. Nucleic Acids Res 22:3977–3982PubMedCrossRefGoogle Scholar
  336. Weerasinghe S, Smith PE, Mohan V, Cheng YK, Pettitt BM (1995) Nanosecond dynamics and structure of a model DNA triple helix in saltwater solution. J Am Chem Soc 117:2147–2158CrossRefGoogle Scholar
  337. Westin L, Blomquist P, Milligan JF, Wrange R (1995) Triple helix DNA alters nucleosomal histone-DNA interactions and acts as a nucleosome barrier. Nucleic Acids Res 23:2184–2191PubMedCrossRefGoogle Scholar
  338. White AP, Powell JW (1995) Observation of the hydration-dependent conformation of the (dG)20(dG)20(dC)20 oligonucleotide triplex using FTIR spectroscopy. Biochemistry 34:1137–1142PubMedCrossRefGoogle Scholar
  339. Wilson WD, Tanious FA, Mizan S, Yao S, Kiselyov AS, Zon G, Strkowski L (1993) DNA triple-helix specific intercalators as antigene enhancers: unfused aromatic cations. Biochemistry 32:10614–10621PubMedCrossRefGoogle Scholar
  340. Wilson WD, Hopkins HP, Mizan S, Hamilton DD, Zon G (1994a) Thermodynamics of DNA triplex formation in oligomers with and without cytosine bases: influence of buffer species, pH, and sequence. J Am Chem Soc 116:3607–3608CrossRefGoogle Scholar
  341. Wilson WD, Mizan S, Tanius FA, Yao S, Zon G (1994b) The interaction of intercalators and groove-binding agents with DNA triple helical structures: the influence of ligand structure, DNA backbone modification, and sequence. J Mol Recognit 7:89–98CrossRefGoogle Scholar
  342. Wolffe AP (1994) Transcription: in tune with the histones. Cell 77:13–16PubMedCrossRefGoogle Scholar
  343. Wu HM, Crothers DM (1984) The locus of sequence-directed and protein-induced DNA bending. Nature 308:509–513PubMedCrossRefGoogle Scholar
  344. Xiang G, Soussou W, McLaughlin LW (1994) A new pyrimidine nucleoside (m5oxC) for the pH-independent recognition of G-C base pairs by oligonucleotide-directed triplex formation. J Am Chem Soc 116:11155–11156CrossRefGoogle Scholar
  345. Xiang G, Bogacki R, McLaughlin LW (1996) Use of a pyrimidine nucleoside that functions as a bidenate hydrogen bond donor for the recognition of isolated or contiguous G-C rich base pairs by oligonucleotide-directed triplex formation. Nucleic Acids Res 24:1963–1970PubMedCrossRefGoogle Scholar
  346. Xodo LE (1995) Kinetic analysis of triple-helix formation by pyrimidine oligodeoxynucleotides and duplex DNA. Eur J Biochem 228:918–926PubMedCrossRefGoogle Scholar
  347. Xodo LE, Manzini G, Quadrifoglio F (1990) Spectroscopic and calorimetric investigation on the DNA triplex formed by d(CTCTTCTTTCTTTTCTTTCTTCTC) and d(GAGAGAAAGA) at acidic pH. Nucleic Acids Res 18:3557–3564PubMedCrossRefGoogle Scholar
  348. Xodo LE, Alunni-Fabbroni M, Manzini G, Quadrifoglio F (1993) Sequence specific DNA triplex formation at imperfect homopurine-homopyrimidine sequences within a DNA plasmid. Eur J Biochem 212:395–401PubMedCrossRefGoogle Scholar
  349. Xodo LE, Alunni-Fabbroni M, Manzini G, Quadrifoglio F. (1994). Nucleic Acids Res 22:3322–3330PubMedCrossRefGoogle Scholar
  350. Yang M, Ghosh SS, Millar DP (1994) Direct measurement of thermodynamics and kinetic parameters of DNA triple helix formation by fluorescence spectroscopy. Biochemistry 33:15329–15337PubMedCrossRefGoogle Scholar
  351. Yoon K, Hobbs CA, Koch J, Sardaro M, Kutny R, Weis AL (1992) Elucidation of the sequence-specific third-strand recognition of four Watson-Crick base pairs in a pyrimidine triple-helix motif: T.AT, C.GC, T.CG, and G.TA. Proc Natl Acad Sci U S A 89:3840–3844CrossRefGoogle Scholar
  352. Young SL, Krawczyk SH, Matteucci MD, Toole JJ (1991) Triple helix formation inhibits transcription elongation in vitro. Proc Natl Acad Sci U S A 88:10023–10026PubMedCrossRefGoogle Scholar
  353. Zhou BW, Puga E, Sun JS, Garestier T, Helene C (1995) Stable triple helixes formed by acridine-containing oligonucleotides with oligopurine tracts of DNA interrupted by one or two pyrimidines. J Am Chem Soc 117:10423–10428Google Scholar
  354. Zinkel SS, Crothers DM (1987) DNA bend direction by phase sensitive detection. Nature 328:178–181PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • T. Akiyama
  • M. Hogan

There are no affiliations available

Personalised recommendations