Advertisement

Nucleic Acid Therapeutics for Human Leukemia: Development and Early Clinical Experience with Oligodeoxynucleotides Directed at c-myb

  • A. M. Gewirtz
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 131)

Abstract

For the past several years, we have been engaged in trying to develop an effective strategy of disrupting specific gene function with antisense oligodeoxynucleotides (ODN). We have also been actively engaged in attempting to utilize this strategy in the clinic. This latter pursuit has focused on finding appropriate gene targets that can be successfully targeted using an antisense approach and then developing “scale-up” methods so that techniques developed in the laboratory can be applied in the clinic. It was our opinion that human leukemias would be particularly amenable to this therapeutic strategy. They can be successfully manipulated ex vivo, the tumor is “liquid” in vivo and therefore more likely to successfully take up ODN, and a great deal is known about their cell and molecular biology. The latter in particular facilitates the choice of a gene target. Accordingly, if ODN were going to be developed as therapeutics, the hematopoietic system seemed an ideal model system.

Keywords

K562 Cell Chronic Myelogenous Leukemia Acute Myelogenous Leukemia Human Leukemia Chronic Myeloid Leukemia Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anfossi G, Gewirtz AM, Calabretta B (1989) An oligomer complementary to c-mybencoded mRNA inhibits proliferation of human myeloid leukemia cell lines. Proc Natl Acad Sci USA 86:3379–3383PubMedCrossRefGoogle Scholar
  2. Barletta C, Pelicci PG, Kenyon LC, Smith SD, Dalla-Favera R (1987) Relationship between the c-myb locus and the 6q-chromosomal aberration in leukemias and lymphomas. Science 235:1064–1067PubMedCrossRefGoogle Scholar
  3. Baskerville S, Ellington AD (1995) RNA structure. Describing the elephant. Curr Biol 5:120–123PubMedCrossRefGoogle Scholar
  4. Bedi A, Zehnbauer BA, Collector MI, Barber JP, Zicha MS, Sharkis SJ, Jones RJ (1993) BCR-ABL gene rearrangement and expression of primitive hematopoietic progenitors in chronic myeloid leukemia. Blood 81:2898–2902PubMedGoogle Scholar
  5. Beltinger C, Saragovi HU, Smith RM, LeSauteur L, Shah N, DeDionisio L, Christensen L, Raible A, Jarett L, Gewirtz AM (1995) Binding, uptake, and intracellular trafficking of phosphorothioate-modified oligodeoxynucleotides. J Clin Invest 95:1814–1823PubMedCrossRefGoogle Scholar
  6. Bergan R, Hakim F, Schwartz GN, Kyle E, Cepada R, Szabo JM, Fowler D, Gress R, Neckers L (1996) Electroporation of synthetic oligodeoxynucleotides: a novel technique for ex vivo bone marrow purging. Blood 88:731–741PubMedGoogle Scholar
  7. Biedenkapp H, Borgmeyer U, Sippel AE, Klempnauer KH (1988) Viral myb oncogene encodes a sequence-specific DNA-binding activity. Nature 335:835–837PubMedCrossRefGoogle Scholar
  8. Burk O, Mink S, Ringwald M, Klempnauer KH (1993) Synergistic activation of the chicken mim-1 gene by v-myb and C/EBP transcription factors. Embo J 12:2027–2038PubMedGoogle Scholar
  9. Calabretta B, Sims RB, Valtieri M, Caracciolo D, Szczylik C, Venturelli D, Ratajczak M, Beran M, Gewirtz AM (1991) Normal and leukemic hematopoietic cells manifest differential sensitivity to inhibitory effects of c-myb antisense oligodeoxynucleotides: an in vitro study relevant to bone marrow purging. Proc Natl Acad Sci USA 88:2351–2355PubMedCrossRefGoogle Scholar
  10. Caracciolo D, Venturelli D, Valtieri M, Peschle C, Gewirtz AM, Calabretta B (1990) Stage —related proliferative activity determines c-myb functional requirements during normal human hematopoiesis. J Clin Invest 85:55–61PubMedCrossRefGoogle Scholar
  11. Carson WE, Halder S, Baiocchi RA, Croce CM, Caligiuri MA (1994) The c-kit ligand suppresses apoptosis of human natural killer cells through the upregulation of bcl2. Proc Natl Acad Sci USA 91:7553PubMedCrossRefGoogle Scholar
  12. Cogswell JP, Cogswell PC, Kuehl WM, Cuddihy AM, Bender TM, Engelke U, Marcu KB, Ting JP (1993) Mechanism of c-myc regulation by c-Myb in different cell lineages. Mol Cell Biol 13:2858–2869PubMedGoogle Scholar
  13. Dini PW, Eltman JT, Lipsick JS (1995) Mutations in the DNA-binding and transcriptional activation domains of v-Myb cooperate in transformation. J Virol 69:2515–2524PubMedGoogle Scholar
  14. Gale RP, Grosveld G, Canaani E, Goldman JM (1993) Chronic myelogenous leukemia: biology and therapy. Leukemia 7:653–658PubMedGoogle Scholar
  15. Gewirtz AM, Calabretta B (1988) A c-myb antisense oligodeoxynucleotide inhibits normal human hematopoiesis in vitro. Science 242:303–306CrossRefGoogle Scholar
  16. Gewirtz AM, Anfossi G, Venturelli D, Valpreda S, Sims R, Calabretta B (1989) Gl/S transition in normal human T-lymphocytes requires the nuclear protein encoded by c-myb. Science 245:180–183PubMedCrossRefGoogle Scholar
  17. Gewirtz AM, Luger S, Sokol D, Gowdin B, Stadtmauer E, Reccio A, Ratajczak MZ (1996a) Oligodeoxynucleotide therapeutics for human myelogenous leukemia: interim results. Blood 88 [Suppl 1]:270aGoogle Scholar
  18. Gewirtz AM, Stein CA, Glazer PM (1996b) Facilitating oligonucleotide delivery: help-ing antisense deliver on its promise. Proc Natl Acad Sci USA 93:3161–3163CrossRefGoogle Scholar
  19. Hijiya N, Zhang J, Ratajczak MZ, Kant JA, DeRiel K, Herlyn M, Zon G, Gewirtz AM (1994) Biologic and therapeutic significance of MYB expression in human melanoma. Proc Natl Acad Sci USA 91:4499–4503PubMedCrossRefGoogle Scholar
  20. Kanei-Ishii C, MacMillan EM, Nomura T, Sarai A, Ramsay RG, Aimoto S, Ishii S, Gonda Ti (1992) Transactivation and transformation by Myb are negatively regulated by a leucine-zipper structure. Proc Natl Acad Sci USA 89:3088–3092PubMedCrossRefGoogle Scholar
  21. Ku DH, Wen SC, Engelhard A, Nicolaides NC, Lipson KE, Marino TA, Calabretta B (1993) c-myb transactivates cdc2 expression via Myb binding sites in the 5’-flanking region of the human cdc2 gene [published erratum appears in J Biol Chem 1993 Jun 15; 268(17):13010]. J Biol Chem 268:2255–2259Google Scholar
  22. Lewis JG, Lin KY, Kothavale A, Flanagan WM, Matteucci MD, DePrince RB, Mook RA Jr, Hendren RW, Wagner RW (1996) A serum-resistant cytofectin for cellular delivery of antisense oligodeoxynucleotides and plasmid DNA. Proc Natl Acad Sci USA 93:3176–3181PubMedCrossRefGoogle Scholar
  23. Loke SL, Stein CA, Zhang XH, Mori K, Nakanishi M, Subasinghe C, Cohen JS, Neckers LM (1989) Characterization of oligonucleotide transport into living cells. Proc Natl Acad Sci USA 86:3474–3478PubMedCrossRefGoogle Scholar
  24. Luger SM, Ratajczak J, Ratajczak MZ, Kuczynski WI, DiPaola RS, Ngo W, Clevenger CV, Gewirtz M (1996) A functional analysis of protooncogene Vav’s role in adult human hematopoiesis. Blood 87:1326–1334PubMedGoogle Scholar
  25. Lyon J, Robinson C, Watson R (1994) The role of Myb proteins in normal and neoplastic cell proliferation. Crit Rev Oncog 5:373–388PubMedCrossRefGoogle Scholar
  26. Melo JV (1996) The molecular biology of chronic myeloid leukaemia. Leukemia 10:751–756PubMedGoogle Scholar
  27. Melotti P, Ku DH, Calabretta B (1994) Regulation of the expression of the hematopoietic stem cell antigen CD34: role of c-myb. J Exp Med 179:1023–1028PubMedCrossRefGoogle Scholar
  28. Metcalf D (1994) Blood. Thrombopoietin — at last. Nature 369:519–520PubMedCrossRefGoogle Scholar
  29. Mucenski ML, McLain K, Kier AB, Swerdlow SH, Schreiner CM, Miller TA, Pietryga DW, Scott WJ Jr, Potter SS (1991) A functional c-myb gene is required for normal murine fetal hepatic hematopoiesis. Cell 65:677–689PubMedCrossRefGoogle Scholar
  30. Nakayama K, Yamamoto R, Ishii S, Nakauchi H (1993) Binding of c-Myb to the core sequence of the CD4 promoter. Int Immunol 5:817–824PubMedCrossRefGoogle Scholar
  31. Ness SA, Marknell A, Graf T (1989) The v-myb oncogene product binds to and activates the promyelocyte-specific mim-1 gene. Cell 59:1115–1125PubMedCrossRefGoogle Scholar
  32. Nomura N, Zu YL, Maekawa T, Tabata S, Akiyama T, Ishii S (1993) Isolation and characterization of a novel member of the gene family encoding the cAMP response element-binding protein CRE-BP1. J Biol Chem 268:4259–4266PubMedGoogle Scholar
  33. Press RD, Reddy EP, Ewert DL (1994) Overexpression of C-terminally but not N-terminally truncated Myb induces fibrosarcomas: a novel nonhematopoietic target cell for the myb oncogene. Mol Cell Biol 14:2278–2290PubMedCrossRefGoogle Scholar
  34. Ratajczak MZ, Hijiya N, Catani L, DeRiel K, Luger SM, McGlave P, Gewirtz AM (1992a) Acute-and chronic-phase chronic myelogenous leukemia colony-forming units are highly sensitive to the growth inhibitory effects of c-myb antisense oligodeoxynucleotides. Blood 79:1956–1961Google Scholar
  35. Ratajczak MZ, Kant JA, Luger SM, Hijiya N, Zhang J, Zon G, Gewirtz AM (1992b) In vivo treatment of human leukemia in a scid mouse model with c-myb antisense oligodeoxynucleotides. Proc Natl Acad Sci USA 89:11823–11827CrossRefGoogle Scholar
  36. Ratajczak MZ, Luger SM, DeRiel K, Abrahm J, Calabretta B, Gewirtz AM (1992c) Role of the KIT protooncogene in normal and malignant human hematopoiesis. Proc Natl Acad Sci USA 89:1710–1714CrossRefGoogle Scholar
  37. Ratajczak MZ, Luger SM, Gewirtz AM (1992d) The c-kit proto-oncogene in normal and malignant human hematopoiesis. Int J Cell Cloning 10:205–214CrossRefGoogle Scholar
  38. Sakura H, Kanei-Ishii C, Nagase T, Nakagoshi H, Gonda TJ, Ishii S (1989) Delineation of three functional domains of the transcriptional activator encoded by the c-myb protooncogene. Proc Natl Acad Sci USA 86:5758–5762PubMedCrossRefGoogle Scholar
  39. Small D, Levenstein M, Kim, E, Carow C, Amin S, Rockwell P, Witte L, Burrow C, Ratajczak MZ, Gewirtz AM et al (1994) STK-1, the human homolog of Flk-2/Flt3, is selectively expressed in CD34+ human bone marrow cells and is involved in the proliferation of early progenitor/stem cells. Proc Natl Acad Sci USA 91:459–463PubMedCrossRefGoogle Scholar
  40. Spitler DG, Tidd DM (1995) Nuclear delivery of antisense oligodeoxynucleotides through reversible permeabilization of human leukemia cells with streptolysin O. Antisense Res Dev 5:13–21Google Scholar
  41. Szczylik C, Skorski T, Ku DH, Nicolaides NC, Wen SC, Rudnicka L, Bonati A, Malaguarnera L, Calabretta B (1993) Regulation of proliferation and cytokine expression of bone marrow fibroblasts: role of c-myb. J Exp Med 178:997–1005PubMedCrossRefGoogle Scholar
  42. Takeshita K, Bollekens JA, Hijiya N, Ratajczak M, Ruddle FH, Gewirtz A M (1993) A homeobox gene of the Antennapedia class is required for human adult erythropoiesis. Proc Natl Acad Sci USA 90:535–538CrossRefGoogle Scholar
  43. Travali S, Reiss K, Ferber A, Petralia S, Mercer WE, Calabretta B, Baserga R (1991) Constitutively expressed c-myb abrogates the requirement for insulinlike growth factor 1 in 3T3 fibroblasts. Mol Cell Biol 11:731–736PubMedGoogle Scholar
  44. Vorbrueggen G, Kalkbrenner F, Guehmann S, Moelling K (1994) The carboxyterminus of human c-myb protein stimulates activated transcription in trans. Nucleic Acids Res 22:2466–2475PubMedCrossRefGoogle Scholar
  45. Weber BL, Westin EH, Clarke MF (1990) Differentiation of mouse erythroleukemia cells enhanced by alternatively spliced c-myb mRNA. Science 249:1291–1293PubMedCrossRefGoogle Scholar
  46. Witte ON (1993) Role of the BCR-ABL oncogene in human leukemia: fifteenth Richard and Hinda Rosenthal Foundation Award Lecture. Cancer Res 53:485–489PubMedGoogle Scholar
  47. Yu H, Bauer B, Lipke GK, Phillips RL, Van Zant G (1993) Apoptosis and hematopoiesis in murine fetal liver. Blood 81:373–384PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • A. M. Gewirtz

There are no affiliations available

Personalised recommendations