Pharmacological Effects of Antisense Oligonucleotide Inhibition of Immediate-Early Response Genes in the CNS

  • B. J. Chiasson
  • M. O. Hebb
  • H. A. Robertson
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 131)

Abstract

Stimuli that activate the cells of the central nervous system (CNS) can have permanent or semi-permanent effects on the functioning of the brain. In many cases the stimuli responsible for this change in brain function also activate transcription factors (TF), some of which are of the immediate-early gene (IEG) family. Stimuli of both physiological and pathophysiological significance have been shown to activate the prototypical IEG, c-fos. Consequently, studies attempting to examine the role of IEGs in the CNS abound. In this chapter we describe studies which have associated IEGs with brain function and demonstrate the emerging role that antisense technology has played in this field and other areas of CNS pharmacology.

Keywords

Toxicity Sarcoma Neurol NMDA Leucine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abraham WC, Christie BR, Logan B, Lawlor P, Dragunow M (1994) Immediate early gene expression associated with the persistence of heterosynaptic long-term depression in the hippocampus. Proc Natl Acad Sci U S A 91:10049–10053PubMedCrossRefGoogle Scholar
  2. Austin CP, Feldman DE, Ida JA Jr, Cepko CL (1995) Vertebrate retinal ganglion cells are selected from competent progenitors by the action of Notch. Development 121:3637–3650PubMedGoogle Scholar
  3. Auwerx J, Sassone-Corsi P (1991) IP-1: a dominant inhibitor of Fos/Jun whose activity is modulated by phosphorylation. Cell 64:983–993PubMedCrossRefGoogle Scholar
  4. Auwerx J, Sassone-Corsi P (1992) AP-1 (Fos-Jun) regulation by IP-1 effect of signal transduction pathways and cell growth. Oncogene 7:2271–2280PubMedGoogle Scholar
  5. Beretta S, Robertson HA, Graybiel AM (1993) Neurochemically specialized projection neurons of the striatum respond differently to psychomotor stimulants. Prog Brain Res 99:201–205CrossRefGoogle Scholar
  6. Berridge M (1986) Second messenger dualism in neuromodulation and memory. Nature 323:294–295PubMedCrossRefGoogle Scholar
  7. Brysch W, Schlingensiepen K-H (1994) Design and application of antisense oligonucleotides in cell culture, in vivo, and as therapeutic agents. Cell Mol Neurobiol 14:557–568PubMedCrossRefGoogle Scholar
  8. Cain DP (1989) Long-term potentiation and kindling: how similar are the mechanisms? Trends Neurosci 12:6–10PubMedCrossRefGoogle Scholar
  9. Cain DP (1992) Kindling and the amygdala. In: Aggleton JP (ed) The amygdala: neurobiological aspects of emotion, memory, and mental dysfunction. Wiley-Liss, New York, pp 539–560Google Scholar
  10. Campbell JM, Bacon TA, Wickstrom E (1990) Oligodeoxynucleoside phosphorothioate stability in subcellular extracts, culture media, sera and cerebrospinal fluid. J Biochem Biophys Methods 20:259–267PubMedCrossRefGoogle Scholar
  11. Chiang M-Y, Chan H, Zounes MA, Freier SM, Lima WF, Bennett CF (1991) Antisense oligonucleotides inhibit intercellular adhesion molecule 1 expression by two distinct mechanisms. J Biol Chem 266:18162–18171PubMedGoogle Scholar
  12. Chiasson BJ (1995) Studies on the role of c-fos in the mammalian brain: Application of antisense technology. PhD thesis, Dalhousie University, Halifax, Nova Scotia, CanadaGoogle Scholar
  13. Chiasson BJ, Hooper ML, Robertson HA (1992a) Amphetamine induced rotational behavior in non-lesioned rats: a role for c-fos expression in the striatum. Soc Neurosci Abstr 562:4Google Scholar
  14. Chiasson, BJ, Hooper, M, Murphy, PR and HA Robertson (1992b) Antisense oligonucleotide eliminates vivo expression of c-fos in mammalian brain. Eur J Pharmacol Mol Pharmacol 227:451–453CrossRefGoogle Scholar
  15. Chiasson BJ, Armstrong JN, Hooper ML, Murphy PR, Robertson HA (1994) The application of antisense oligonucleotides to the brain: some pitfalls. Cell Mol Neurobiol 14:507–521PubMedCrossRefGoogle Scholar
  16. Chiasson BJ, Dennison Z, Robertson HA (1995) Amygdala kindling and immediate-early genes. Mol Brain Res 29:191–199PubMedCrossRefGoogle Scholar
  17. Chiasson BJ, Hong MGL, Robertson HA (1997) Putative roles for the inducible transcription factor c-fos in the central nervous system: studies with antisense oligonucleotides. Neurochem Int 31:459–475PubMedCrossRefGoogle Scholar
  18. Christy B, Lau LF, Nathans D (1988) A gene activated in mouse 3T3 cells by serum growth factors encodes a protein with “zinc finger” sequences. Proc Natl Acad Sci U S A 85:7857–7861PubMedCrossRefGoogle Scholar
  19. Cohen DR, Curran T (1988) fra-1 serum inducible, cellular immediate-early gene that encodes a Fos-related antigen. Mol Cell Biol 8:2063–2069Google Scholar
  20. Cole AJ, Saffen DW, Baraban JM, Worley PF (1989) Rapid increase of an immediate early gene messenger RNA in hippocampal neurons by synaptic NMDA receptor activation. Nature 340:474–476PubMedCrossRefGoogle Scholar
  21. Curran T (1988) The fos oncogene. In: Reddy EP, Skalka AM, Curran T (eds) The oncogene handbook, vol 16. Elsevier Science (Biomedical Division), Amsterdam, pp 307–325Google Scholar
  22. Curran T, Franza BR Jr (1988) Fos and Jun: the AP-1 connection. Cell 55:395–397 Curran T, Morgan JI (1995) Fos: an immediate-early transcription factor in neurons. J Neurobiol 26:403–412CrossRefGoogle Scholar
  23. Curran T, Teich NM (1982) Candidate product of the FBJ murine osteosarcoma virus oncogene: characterization of a 55,000-Dalton phosphoprotein. J Virol 42:114–122PubMedGoogle Scholar
  24. Curran T, Gordon MB, Rubino KL, Sambucetti LC (1987) Isolation and characterization of the c-fos (rat) cDNA and analysis of post-translational modification in vitro. Oncogene 2:79–84PubMedGoogle Scholar
  25. Davis HP, Squire LR (1984) Protein synthesis and memory: a review. Psychol Bull 96:518–559PubMedCrossRefGoogle Scholar
  26. Downs AW, Eddy NB (1932) The effect of repeated doses of cocaine on the rat. J Pharmacol Exp Ther 46:199–200Google Scholar
  27. Dragunow M, Robertson HA (1987) Kindling stimulation induces c-fos protein(s) in granule cells of the rat dentate gyrus. Nature 329:441–442PubMedCrossRefGoogle Scholar
  28. Dragunow M, Robertson HA, Robertson GS (1988) Effects of kindled seizures on the induction of c-fos protein(s) in mammalian neurons. Exp Neurol 102:261–263PubMedCrossRefGoogle Scholar
  29. Dragunow M, Currie RW, Faull RLM, Robertson HA, Jansen K (1989) Immediate-early genes, kindling and long-term potentiation. Neurosci Biobehav Rev 13:301–313PubMedCrossRefGoogle Scholar
  30. Dragunow M, Lawlor PA, Chiasson BJ, Robertson HA (1993) Antisense to c-fos suppresses both Fos and Jun B expression in rat striatum and generates apomorphine-and amphetamine-induced rotation. Neuroreport 5:305–306PubMedCrossRefGoogle Scholar
  31. Dragunow M, Tse C, Glass M, Lawlor P (1994) c-fos antisense reduces expression of krox 24 in rat caudate and neocortex. Cell Mol Neurobiol 14:395–405PubMedCrossRefGoogle Scholar
  32. During MJ, Ryder KM, Spencer DD (1995) Hippocampal GABA transporter function in temporal-lobe epilepsy. Nature 376:174–177PubMedCrossRefGoogle Scholar
  33. Ernfors P, Bengzon J, Kokaia Z, Persson H, Lindvall O (1991) Increased levels of messenger RNA for neurotrophic factors in the brain during kindling epileptogenesis. Neuron 7:165–176PubMedCrossRefGoogle Scholar
  34. Gao W-Y, Han F-S, Storm C, Egan W, Cheng Y-C (1991) Phosphorothioate oligonucleotides are inhibitors of human DNA polymerases and RNase H: implications for antisense technology. Mol Pharmacol 41:223–229Google Scholar
  35. Geinisman Y, Morrell F, deToledo-Morrell L (1988) Remodelling of synaptic architec-ture during hippocampal “kindling”. Proc Natl Acad Sci U S A 85:3260–3264PubMedCrossRefGoogle Scholar
  36. Gillardon F, Beck H, Uhlmann E, Herdegen T, Sandkuler J, Peyman A, Zimmermann M (1994) Inhibition of c-fos protein expression in rat spinal cord by antisense oligodeoxynucleotide superfusion. Eur J Neurosci 6:880–884PubMedCrossRefGoogle Scholar
  37. Goddard GV, McIntyre D, Leech C (1969) A permanent change in brain function resulting from daily electrical stimulation. Exp Neurol 25:295–330PubMedCrossRefGoogle Scholar
  38. Goelet P, Castellucci VF, Schacher S, Kandel ER (1986) The long and short of longterm memory — a molecular framework. Nature 322:419–422PubMedCrossRefGoogle Scholar
  39. Goodchild J (1989) Inhibition of gene expression by oligonucleotide. In: Cohen JS (ed) Oligonucleotides: antisense inhibitors of gene expression. CRC Press, Boca Raton, pp 53–77Google Scholar
  40. Graybiel AM, Moratalla R, Robertson HA (1990) Amphetamine and cocaine induce drug-specific activation of the c-fos gene in striosome-matrix compartments and limbic subdivisions of the striatum. Proc Natl Acad Sci U S A 87:6912–6916PubMedCrossRefGoogle Scholar
  41. Guvakova MA, Yakubov LA, Vlodaysky I, Tonkinson JL, Stein CA (1995) Phosphorothioate oligodeoxynucleotides bind to basic fibroblast growth factor, inhibit its binding to cell surface receptors, and remove it from low affinity binding sites on extracellular matrix. J Biol Chem 270:2620–2627PubMedCrossRefGoogle Scholar
  42. Hebb MO, Robertson HA (1997a) End-capped antisense oligonucleotides effectively inhibit gene expression in vivo and offer a low-toxicity alternative to fully modified phosphorothioate oligodeoxynucleotides. Mol Brain Res (in press)Google Scholar
  43. Hebb MO, Robertson HA (1997b) Coordinate suppression of striatal ngfi-a and c-fos produces locomotor asymmetry and upregulation of IEGs in the globus pallidus. Mol Brain Res (in press)Google Scholar
  44. Heilig M, Pich EM, Koob GF, Yee F, Wahlestedt C (1992) In vivo down regulation of neuropeptide Y (NPY) Yl receptors by ICV antisense oligodeoxynucleotide administration is associated with signs of anxiety in rats. Soc Neurosci Abstr 642:18Google Scholar
  45. Heilig M, Engel JA, Söderpalm B (1993) C-fos antisense in the nucleus accumbens blocks the locomotor stimulant action of cocaine. Eur J Pharmacol 236:339–340PubMedCrossRefGoogle Scholar
  46. Hengerer B, Lindholm D, Heumann R, Ruther U, Wagner EF, Thoenen H (1990) Lesion-induced increase in nerve growth factor mRNA is mediated by c-fos. Proc Natl Acad Sci U S A 87:3899–3903PubMedCrossRefGoogle Scholar
  47. Hirai S-I, Ryseck R-P, Mechta F (1989) Characterization of jun-D: a new member of the jun proto-oncogene family. EMBO J 8:1433–1439PubMedGoogle Scholar
  48. Hooper ML, Chiasson BJ, Robertson HA (1994) Infusion into the brain of an antisense oligonucleotide to the immediate-early gene c-fos suppresses production of Fos and produces a behavioral effect. Neuroscience 63:917–924PubMedCrossRefGoogle Scholar
  49. Hosford DA, Simonato M, Cao Z, Garcia-Cairasco N, Silver JM, Butler L, Shin C, McNamara JO (1995) Differences in the anatomic distribution of immediate-early gene expression in amygdala and angular bundle kindling development. J Neurosci 15:2513–2523PubMedGoogle Scholar
  50. Hughes P, Dragunow M (1995) Induction of immediate-early genes and the control of neurotransmitter-regulated gene expression within the nervous system. Pharmacol Rev 47:133–178Google Scholar
  51. Hughes P, Singleton K, Dragunow M (1994) MK-801 does not attenuate immediate-early gene expression following an amygdala afterdischarge. Exp Neurol 128:276–283PubMedCrossRefGoogle Scholar
  52. Hunt SP, Pini A, Evan G (1987) Induction of c-fos-like protein in spinal cord neurons following sensory stimulation. Nature 328:632–634PubMedCrossRefGoogle Scholar
  53. Hunter JC, Woodburn VL, Durieux C, Pettersson EKE, Poat JA, Hughes J (1995) Cfos antisense oligodeoxynucleotide increases formalin-induced nociception and regulates preprodynorphin expression. Neuroscience 65:485–492PubMedCrossRefGoogle Scholar
  54. Ji R-R, Zhang Q, Bedecs K, Arvidsson J, Zhang X, Xu X-J, Wiesenfeld-Hallin Z, Bartfai T, Hökfelt (1994) Galanin antisense oligonucleotides reduce galanin levels in dorsal root ganglia and induce autotomy in rats after axotomy. Proc Natl Acad Sci U S A 91:12540–12543PubMedCrossRefGoogle Scholar
  55. Kerppola TK, Curran T (1991a) Fos-Jun heterodimers and Jun homodimers bend DNA in opposite directions: implications for transcription factor cooperativity. Cell 66:317–326CrossRefGoogle Scholar
  56. Kerppola TK, Curran T (1991b) DNA bending by Fos and Jun: the flexible hinge model. Science 254:1210–1214CrossRefGoogle Scholar
  57. Konradi C, Kobierski LA, Nguyen TV, Heckers S, Hyman SE (1993) The c-AMPresponse-element-binding-protein interacts but Fos protein does not interact, with the proenkephalin enhancer in rat striatum. Proc Natl Acad Sci U S A 90:7005–7009PubMedCrossRefGoogle Scholar
  58. Kouzarides T, Ziff E (1988) The role of the leucine zipper in the fos-jun interaction. Nature 336:646–651PubMedCrossRefGoogle Scholar
  59. Krieg AM (1993) Uptake and efficacy of phosphodiester and modified antisense oligonucleotides in primary cell cultures. Clin Chem 39:710–712Google Scholar
  60. Krieg AM, Yi A-K, Matson S, Waldschmidt TJ, Bishop GA, Teasdale R, Koretzky GA, Klinman DM (1995) CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 374:546–548PubMedCrossRefGoogle Scholar
  61. Labiner DM, Butler LS, Cao Z, Hosford DA, Shin C, McNamara JO (1993) Induction of c-fos mRNA by kindled seizures: complex relationship with neuronal burst firing. J Neurosci 13:744–751PubMedGoogle Scholar
  62. Lamprecht R, Dudai Y (1996) Transient expression of c-fos in rat amygdala during training is required for encoding conditioned taste aversion memory. Learn Mem 3:31–41PubMedCrossRefGoogle Scholar
  63. Lau LF, Nathans D (1987) Expression of a set of growth-regulated immediate-early genes in BALB/c3T3 cells: coordinate regulation with c-fos or c-myc. Proc Natl Acad Sci U S A 4:1182–1186CrossRefGoogle Scholar
  64. Lemaire P, Revelant O, Bravo R, Charnay P (1988) Two mouse genes encoding potential transcription factors with identical DNA-binding domains are activated by growth factors in cultured cells. Proc Natl Acad Sci U S A 85:4691–4695PubMedCrossRefGoogle Scholar
  65. Liu PK, Salminen A, He YY, Jiang MH, Xue JJ, Liu JS, Hsu CY (1994) Suppression of ischemia-induced Fos expression and AP-1 activity by an antisense oligodeoxynucleotide to c-fos mRNA. Ann Neurol 36:566–576PubMedCrossRefGoogle Scholar
  66. Maki Y, Bos TJ, Davis C, Starbuck M, Vogt PK (1987) Avian sarcoma virus 17 carries a new oncogene jun. Proc Natl Acad Sci U S A 84:2848–2852PubMedCrossRefGoogle Scholar
  67. Masquilier D, Sassone-Corsi P (1992) Transcriptional cross-talk: nuclear factors CREM and CREB bind to AP-1 sites and inhibit activation by Jun. J Biol Chem 267:22460–22466PubMedGoogle Scholar
  68. Matteucci MD, Wagner RW (1996) In pursuit of antisense. Nature 384:20–22 McKnight SL (1991) Molecular zippers in gene regulation. Sci Am 264:54–64Google Scholar
  69. Merchant, KM (1994) c-fos antisense oligonucleotide specifically attenuates haloperidol-induced increases in neurotensin/neuromedin N mRNA expression in rat dorsal striatum. Mol Cell Neurosci 5:336–344PubMedCrossRefGoogle Scholar
  70. Milbrandt J (1987) A nerve growth factor-induced gene encodes a possible transcriptional regulatory factor. Science 238:797–799PubMedCrossRefGoogle Scholar
  71. Möller C, Bing O, Heilig M (1994) c-fos Expression in the amygdala: in vivo antisense modulation and role in anxiety. Cell Mol Neurobiol 14:415–423PubMedCrossRefGoogle Scholar
  72. Moore SD, Madamba SG, Schweitzer P, Siggins GR (1994) Voltage-dependent effects of opioid peptides on hippocampal CA3 pyramidal neurons in vitro. J Neurosci 14:809–820PubMedGoogle Scholar
  73. Moratalla R, Robertson HA, Graybiel AM (1992) Dynamic regulation of NGFI-A (zif268, egrl) gene expression in the striatum. J Neurosci 12:2609–2622PubMedGoogle Scholar
  74. Moratalla R, Vickers EA, Robertson HA, Cochran BH, Graybiel AM (1993) Coordinate expression of c-fos and junB is induced in the striatum by cocaine. J Neurosci 13:423–433PubMedGoogle Scholar
  75. Morgan JI, Curran T (1991) Stimulus-transcription coupling in the nervous system: Involvement of the inducible proto-oncogenes fos and jun. Annu Rev Neurosci 14:421–451PubMedCrossRefGoogle Scholar
  76. Morgan JI, Cohen DR, Hempstead JL, Curran T (1987) Mapping patterns of c-fos expression in the central nervous system after seizure. Science 237:192–197PubMedCrossRefGoogle Scholar
  77. Morris BJ, Johnston HM (1995) A role for hippocampal Opioids in long-term functional plasticity. Trends Neurosci 18:350–355PubMedCrossRefGoogle Scholar
  78. Nellen W, Lichtenstein C (1993) What makes an mRNA anti-sense-itive? Trends Biochem Sci 18:419–423PubMedCrossRefGoogle Scholar
  79. Nestler EJ, Hope BT, Widnell KL (1993) Drug addiction: a model for the molecular basis of neural plasticity. Neuron 11:995–1006PubMedCrossRefGoogle Scholar
  80. Nishina H, Sato H, Suzuki T, Sato N, Iba H (1990) Isolation and characterisation of Fra-2, an additional member of the fos gene family. Proc Natl Acad Sci U S A 87:3619–3623PubMedCrossRefGoogle Scholar
  81. Nishizuka M, Okada R, Seki K, Arai Y, Iizuka R (1991) Loss of dendritic synapses in the medial amygdala associated with kindling. Brain Res 522:351–355CrossRefGoogle Scholar
  82. Osen-Sand A, Catsicas M, Stapel JK, Jones KA, Ayala G, Knowles J, Grenningloh G, Catsicas S (1993) Inhibition of axonal growth by SNAP-25 antisense oligonucleotides in vitro and in vivo. Nature 364:445–448PubMedCrossRefGoogle Scholar
  83. Paul ML, Graybiel AM, David J-C, Robertson HA (1992) D1-like and D2-like dopamine receptors synergistically activate rotation and c-fos expression in the dopamine-depleted striatum in a rat model of Parkinson’s disease. J Neurosci 12:3729–3742PubMedGoogle Scholar
  84. Paul ML, Currie RW, Robertson HA (1995) Priming of a Dl dopamine receptor behavioural response is dissociated from striatal immediate-early gene activity. Neuroscience 66:347–359PubMedCrossRefGoogle Scholar
  85. Perlin JB, Gerwin CM, Panchision DM, Vicks RS, Jakoi ER, DeLorenzo RJ (1993) Kindling produces long-lasting and selective changes in gene expression of hippocampal neurons. Proc Natl Acad Sci U S A 90:1741–1745PubMedCrossRefGoogle Scholar
  86. Racine RJ (1972) Modification of seizure activity by electrical stimulation: motor seizure. Electroencephalogr Clin Neurophysiol 38:281–294Google Scholar
  87. Robertson GS, Herrera DG, Dragunow M, Robertson HA (1989) L-Dopa activates cfos expression in the striatum of 6-hydroxydopamine-lesioned rats. Eur J Pharmacol 159:99–100PubMedCrossRefGoogle Scholar
  88. Robertson GS, Tetzlaff W, Bedard A, St-Jean M, Wigle N (1995) c-fos mediates antipsychotic-induced neurotensin gene expression in the rodent striatum. Neuroscience 67:325–344PubMedCrossRefGoogle Scholar
  89. Robertson HA (1992a) Immediate-early genes, neuronal plasticity, and memory. Biochem Cell Biol 70:729–737CrossRefGoogle Scholar
  90. Robertson HA (1992b) Dopamine receptor interactions: some implications for the treatment of Parkinson’s disease. Trends Neurosci 15:201–206CrossRefGoogle Scholar
  91. Robertson HA, Peterson MR, Murphy K, Robertson GS (1989) D1-dopamine receptor agonists selectively activate striatal c-fos independent of rotational behaviour. Brain Res 503:346–349PubMedCrossRefGoogle Scholar
  92. Rusak B, Robertson HA, Wisden W, Hunt SP (1990) Light pulses that shift rhythms induce gene expression in the suprachiasmatic nucleus. Science 248:1237–1240PubMedCrossRefGoogle Scholar
  93. Ryder K, Lau LF, Nathans D (1988) A gene activated by growth factors is related to the oncogene v-jun. Proc Natl Acad Sci U S A 85:1487–1491PubMedCrossRefGoogle Scholar
  94. Ryder K, Lanahan A, Perez-Albuerne E, Nathans D (1989) Jun-D: a third member of the Jun gene family. Proc Natl Acad Sci U S A 86:1500–1503PubMedCrossRefGoogle Scholar
  95. Sassone-Corsi P, Sisson JC, Verma IM (1988) Transcriptional autoregulation of the proto-oncogene fos. Nature 334:314–319PubMedCrossRefGoogle Scholar
  96. Sharp FR (1994) The sense of antisense fos oligonucleotides. Ann Neurol 36:555–556PubMedCrossRefGoogle Scholar
  97. Sheng M, Greenberg ME (1990) The regulation and function of c-fos and other immediate-early genes in the nervous system. Neuron 4:477–485PubMedCrossRefGoogle Scholar
  98. Sheng M, McFadden G, Greenberg ME (1990) Membrane depolarization and calcium induce c-fos transcription via phosphorylation of transcription factor CREB. Neuron 4:571–582PubMedCrossRefGoogle Scholar
  99. Shin C, McNamara JO, Morgan JI, Curran T, Cohen DR (1990) Induction of c-fos mRNA expression by afterdischarge in the hippocampus of naive and kindled rats. J Neurochem 55:1050–1055PubMedCrossRefGoogle Scholar
  100. Silvia CP, King GR, Lee TH, Xue Z-Y, Caron MG, Ellinwood EH (1994) Intranigral administration of D2 dopamine receptor antisense oligodeoxynucleotides establishes a role for nigrostriatal D2 autoreceptors in the motor actions of cocaine. Mol Pharmacol 46:51–57PubMedGoogle Scholar
  101. Sinomato M, Hosford DA, Labiner DM, Shin C, Mansbach HH, McNamara JO (1991) Differential expression of immediate early genes in the hippocampus in the kindling model of epilepsy. Mol Brain Res 11:115–124CrossRefGoogle Scholar
  102. Sommer W, Bjelke B, Ganten D, Fuxe K (1993) Antisense oligonucleotide to c-fos induces ipsilateral rotational behavior to d-amphetamine. Neuroreport 5:277–280PubMedCrossRefGoogle Scholar
  103. Sommer W, Rimondini R, O’Connor W, Hansson AC, Ungerstedt U, Fuxe K (1996) Intrastriatal injected c-fos antisense oligonucleotide interferes with striatonigral but not striatopallidal y-aminobutyric acid transmission in the conscious rat. Proc Natl Acad Sci U S A 93:14134–14139PubMedCrossRefGoogle Scholar
  104. Sonnenberg JL, Rauscher JR III, Morgan JI, Curran T (1989) Regulation of proenkephalin by Fos and Jun. Science 246:1622–1625PubMedCrossRefGoogle Scholar
  105. Standifer KM, Chien C-C, Wahlestedt C, Brown GP, Pasternak GW (1994) Selective loss of d opioid analgesia and binding by antisense oligodeoxynucleotides to a d opioid receptor. Neuron 12:805–810PubMedCrossRefGoogle Scholar
  106. Stein CA, Cheng Y-C (1993) Antisense oligonucleotides as therapeutic agents — is the bullet really magical? Science 261:1004–1012PubMedCrossRefGoogle Scholar
  107. Stein CA, Subasinghe C, Shinozuka K, Cohen JS (1988) Physicochemical properties of phosphorothioate oligodeoxynucleotides. Nucleic Acids Res 16:3209–3221PubMedCrossRefGoogle Scholar
  108. Stephenson ML, Zamecnik PC (1978) Inhibition of Rous sarcoma viral RNA translation by specific oligodeoxynucleotide. Nucleic Acid Res 16:3209–3221Google Scholar
  109. Struhl K (1991) Mechanisms for diversity in gene expression patterns. Neuron 7:177–181PubMedCrossRefGoogle Scholar
  110. Sukhatme VP, Cao X, Chang LC, Tsai-Morris C-H, Stamenkovich D, Ferreira PCP, Cohen DR, Edwards SA, Shows TB, Curran T, LeBeau MM, Adamson EDA (1988) A zinc finger-encoding gene coregulated with c-fos during growth and differentiation and after cellular depolarization. Cell 53:37–43PubMedCrossRefGoogle Scholar
  111. Sutula T, He XX, Cavazos J, Scott G (1988) Synaptic reorganization in the hippocampus induced by abnormal functional activity. Science 239:1147–1150PubMedCrossRefGoogle Scholar
  112. Terman GW, Wagner JJ, Chavkin C (1994) Kappa opioids inhibit induction of longterm potentiation in the dentate gyrus of the Guinea pig hippocampus. J Neurosci 14:4740–4747PubMedGoogle Scholar
  113. Teskey CG, Atkinson BG, Cain DP (1991) Expression of the proto-oncogene c-fos following electrical kindling in the rat. Mol Brain Res 11:1–10PubMedCrossRefGoogle Scholar
  114. Thierry AR, Dritschilo A (1992) Intracellular availability of unmodified, phosphorothioated, and liposomally encapsulated oligodeoxynucleotides for antisense activity. Nucleic Acid Res 20:5691–5698PubMedCrossRefGoogle Scholar
  115. Tseng LF, Collins KA (1994) Antisense oligodeoxynucleotide to a d-opioid receptor given intrathecally blocks ICV administered b-endorphin-induced antinociception in the mouse. Life Sci 55:PL127–131CrossRefGoogle Scholar
  116. Ungerstedt U (1971a) Striatal dopamine release after amphetamine or nerve degenera-tion revealed by rotational behaviour. Acta Physiol Scand [Suppl] 367:49–68Google Scholar
  117. Ungerstedt U (1971b) Postsynaptic supersensitivity after 6-hydroxydopamine induced degeneration of the nigro-striatal dopamine system. Acta Physiol Scand [Suppl] 367:69–93Google Scholar
  118. Wagner JJ, Terman GW, Chavkin C (1993) Endogenous dynorphins inhibit excitatory neurotransmission and block LTP induction in the hippocampus. Nature 363:451–454PubMedCrossRefGoogle Scholar
  119. Wagner RW (1994) Gene inhibition using antisense oligodeoxynucleotides. Nature 372:333–335PubMedCrossRefGoogle Scholar
  120. Wahlestedt C (1994) Antisense oligonucleotide strategies in neuropharmacology. Trends Pharmacol Sci 15:42–46PubMedCrossRefGoogle Scholar
  121. Wahlestedt C, Golanov E, Yamamoto S, Yee F, Ericson H, Yoo H, Inturrisi CE, Reis DJ (1993a) Antisense oligonucleotides to NMDA-R1 receptor channel protect cortical neurons from excitotoxicity and reduce focal ischaemic infarctions. Nature 363:260–263CrossRefGoogle Scholar
  122. Wahlestedt C, Pich EM, Koob GF, Yee F, Heilig M (1993b) Modulation of anxiety and neuropeptide Y-Y1 receptors by antisense oligodeoxynucleotides. Science 259:528–531CrossRefGoogle Scholar
  123. Watanabe Y, Johnson RS, Butler LS, Binder DK, Spiegelman BM, Papaioannou VE, McNamara JO (1996) Null mutation of c-fos impairs structural and functional plasticities in the kindling model of epilepsy. J Neurosci 16:3827–3836PubMedGoogle Scholar
  124. Weiss B, Zhou L-W, Zhang S-P, Qin Z-H (1993) Antisense oligodeoxynucleotide inhibits DZ Dopamine receptor-mediated behavior and DZ messenger RNA. Neuroscience 55:607–612PubMedCrossRefGoogle Scholar
  125. Whitesell L, Geselowitz D, Chavany C, Fahmy B, Walbridge S, Alger JR, Neckers LM (1993) Stability, clearance, and disposition of intraventricularly administered oligodeoxynucleotides: implications for therapeutic application within the central nervous system. Proc Natl Acad Sci U S A 90:4665–4669PubMedCrossRefGoogle Scholar
  126. Wisden W, Errington ML, Williams S, Dunnett SB, Waters C, Hitchcock D, Evan G, Bliss TVP, Hunt SP (1990) Differential expression of immediate-early genes in the hippocampus and spinal cord. Neuron 4:603–614PubMedCrossRefGoogle Scholar
  127. Wollnik F, Brysch W, Uhlmann E, Gillardon F, Bravo R, Zimmermann M, Schlingensiepen KH, Herdegen T (1995) Block of c-fos and jun-B expression by antisense-oligonucleotides inhibits light-induced phase shifts of the mammalian circadian clock. Eur J Neurosci 7:388–393PubMedCrossRefGoogle Scholar
  128. Woolf TM, Jennings GB, Rebagliati M, Melton DA (1990) The stability, toxicity and effectiveness of unmodified and phosphorothioate antisense oligodeoxynucleotides in Xenopus oocytes and embryos. Nucleic Acids Res 18:1763–1769PubMedCrossRefGoogle Scholar
  129. Woolf TM, Melton DA, Jennings CGB (1992) Specificity of antisense oligonucleotides in vivo (Xenopus oocytes). Proc Natl Acad Sci U S A 89:7305–7309PubMedCrossRefGoogle Scholar
  130. Yee F, Ericson H, Reis DJ, Wahlestedt C (1994) Cellular uptake of intracerebroventricularly administered biotin-or digoxigenin-labeled antisense oligodeoxynucleotides in the rat. Cell Mol Neurobiol 14:475–486PubMedCrossRefGoogle Scholar
  131. Zamecnik PC, Stephenson NL (1978) Inhibition of Rous sarcoma virus replication and cell transformation by a specific oligodeoxynucleotide. Proc Natl Acad Sci U S A 75:280–294PubMedCrossRefGoogle Scholar
  132. Zerial M, Toschi L, Ryseck R-P, Schuermann M, Muller R, Bravo R (1989) The product of a novel growth factor activated gene, fos-B, interacts with JUN proteins enhancing their DNA binding activity. EMBO J 8:805–813PubMedGoogle Scholar
  133. Zhang M, Creese I (1993) Antisense oligonucleotide reduces brain dopamine D2 receptor: behavioral correlates. Neurosci Lett 161:223–226PubMedCrossRefGoogle Scholar
  134. Zhou LM, Zhang SP, Qin ZH, Weiss B (1994) In vivo administration of an oligonucleotide antisense to the D2 dopamine receptor messenger RNA inhibits D2 dopamine receptor mediated behavior and the expression of D2 dopamine receptors in mouse striatum. J Pharmacol Exp Ther 268:1015–1023PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • B. J. Chiasson
  • M. O. Hebb
  • H. A. Robertson

There are no affiliations available

Personalised recommendations