Skip to main content

Pharmacological Effects of Antisense Oligonucleotide Inhibition of Immediate-Early Response Genes in the CNS

  • Chapter
Antisense Research and Application

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 131))

  • 236 Accesses

Abstract

Stimuli that activate the cells of the central nervous system (CNS) can have permanent or semi-permanent effects on the functioning of the brain. In many cases the stimuli responsible for this change in brain function also activate transcription factors (TF), some of which are of the immediate-early gene (IEG) family. Stimuli of both physiological and pathophysiological significance have been shown to activate the prototypical IEG, c-fos. Consequently, studies attempting to examine the role of IEGs in the CNS abound. In this chapter we describe studies which have associated IEGs with brain function and demonstrate the emerging role that antisense technology has played in this field and other areas of CNS pharmacology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abraham WC, Christie BR, Logan B, Lawlor P, Dragunow M (1994) Immediate early gene expression associated with the persistence of heterosynaptic long-term depression in the hippocampus. Proc Natl Acad Sci U S A 91:10049–10053

    Article  PubMed  CAS  Google Scholar 

  • Austin CP, Feldman DE, Ida JA Jr, Cepko CL (1995) Vertebrate retinal ganglion cells are selected from competent progenitors by the action of Notch. Development 121:3637–3650

    PubMed  CAS  Google Scholar 

  • Auwerx J, Sassone-Corsi P (1991) IP-1: a dominant inhibitor of Fos/Jun whose activity is modulated by phosphorylation. Cell 64:983–993

    Article  PubMed  CAS  Google Scholar 

  • Auwerx J, Sassone-Corsi P (1992) AP-1 (Fos-Jun) regulation by IP-1 effect of signal transduction pathways and cell growth. Oncogene 7:2271–2280

    PubMed  CAS  Google Scholar 

  • Beretta S, Robertson HA, Graybiel AM (1993) Neurochemically specialized projection neurons of the striatum respond differently to psychomotor stimulants. Prog Brain Res 99:201–205

    Article  Google Scholar 

  • Berridge M (1986) Second messenger dualism in neuromodulation and memory. Nature 323:294–295

    Article  PubMed  CAS  Google Scholar 

  • Brysch W, Schlingensiepen K-H (1994) Design and application of antisense oligonucleotides in cell culture, in vivo, and as therapeutic agents. Cell Mol Neurobiol 14:557–568

    Article  PubMed  CAS  Google Scholar 

  • Cain DP (1989) Long-term potentiation and kindling: how similar are the mechanisms? Trends Neurosci 12:6–10

    Article  PubMed  CAS  Google Scholar 

  • Cain DP (1992) Kindling and the amygdala. In: Aggleton JP (ed) The amygdala: neurobiological aspects of emotion, memory, and mental dysfunction. Wiley-Liss, New York, pp 539–560

    Google Scholar 

  • Campbell JM, Bacon TA, Wickstrom E (1990) Oligodeoxynucleoside phosphorothioate stability in subcellular extracts, culture media, sera and cerebrospinal fluid. J Biochem Biophys Methods 20:259–267

    Article  PubMed  CAS  Google Scholar 

  • Chiang M-Y, Chan H, Zounes MA, Freier SM, Lima WF, Bennett CF (1991) Antisense oligonucleotides inhibit intercellular adhesion molecule 1 expression by two distinct mechanisms. J Biol Chem 266:18162–18171

    PubMed  CAS  Google Scholar 

  • Chiasson BJ (1995) Studies on the role of c-fos in the mammalian brain: Application of antisense technology. PhD thesis, Dalhousie University, Halifax, Nova Scotia, Canada

    Google Scholar 

  • Chiasson BJ, Hooper ML, Robertson HA (1992a) Amphetamine induced rotational behavior in non-lesioned rats: a role for c-fos expression in the striatum. Soc Neurosci Abstr 562:4

    Google Scholar 

  • Chiasson, BJ, Hooper, M, Murphy, PR and HA Robertson (1992b) Antisense oligonucleotide eliminates vivo expression of c-fos in mammalian brain. Eur J Pharmacol Mol Pharmacol 227:451–453

    Article  CAS  Google Scholar 

  • Chiasson BJ, Armstrong JN, Hooper ML, Murphy PR, Robertson HA (1994) The application of antisense oligonucleotides to the brain: some pitfalls. Cell Mol Neurobiol 14:507–521

    Article  PubMed  CAS  Google Scholar 

  • Chiasson BJ, Dennison Z, Robertson HA (1995) Amygdala kindling and immediate-early genes. Mol Brain Res 29:191–199

    Article  PubMed  CAS  Google Scholar 

  • Chiasson BJ, Hong MGL, Robertson HA (1997) Putative roles for the inducible transcription factor c-fos in the central nervous system: studies with antisense oligonucleotides. Neurochem Int 31:459–475

    Article  PubMed  CAS  Google Scholar 

  • Christy B, Lau LF, Nathans D (1988) A gene activated in mouse 3T3 cells by serum growth factors encodes a protein with “zinc finger” sequences. Proc Natl Acad Sci U S A 85:7857–7861

    Article  PubMed  CAS  Google Scholar 

  • Cohen DR, Curran T (1988) fra-1 serum inducible, cellular immediate-early gene that encodes a Fos-related antigen. Mol Cell Biol 8:2063–2069

    CAS  Google Scholar 

  • Cole AJ, Saffen DW, Baraban JM, Worley PF (1989) Rapid increase of an immediate early gene messenger RNA in hippocampal neurons by synaptic NMDA receptor activation. Nature 340:474–476

    Article  PubMed  CAS  Google Scholar 

  • Curran T (1988) The fos oncogene. In: Reddy EP, Skalka AM, Curran T (eds) The oncogene handbook, vol 16. Elsevier Science (Biomedical Division), Amsterdam, pp 307–325

    Google Scholar 

  • Curran T, Franza BR Jr (1988) Fos and Jun: the AP-1 connection. Cell 55:395–397 Curran T, Morgan JI (1995) Fos: an immediate-early transcription factor in neurons. J Neurobiol 26:403–412

    Article  Google Scholar 

  • Curran T, Teich NM (1982) Candidate product of the FBJ murine osteosarcoma virus oncogene: characterization of a 55,000-Dalton phosphoprotein. J Virol 42:114–122

    PubMed  CAS  Google Scholar 

  • Curran T, Gordon MB, Rubino KL, Sambucetti LC (1987) Isolation and characterization of the c-fos (rat) cDNA and analysis of post-translational modification in vitro. Oncogene 2:79–84

    PubMed  CAS  Google Scholar 

  • Davis HP, Squire LR (1984) Protein synthesis and memory: a review. Psychol Bull 96:518–559

    Article  PubMed  CAS  Google Scholar 

  • Downs AW, Eddy NB (1932) The effect of repeated doses of cocaine on the rat. J Pharmacol Exp Ther 46:199–200

    CAS  Google Scholar 

  • Dragunow M, Robertson HA (1987) Kindling stimulation induces c-fos protein(s) in granule cells of the rat dentate gyrus. Nature 329:441–442

    Article  PubMed  CAS  Google Scholar 

  • Dragunow M, Robertson HA, Robertson GS (1988) Effects of kindled seizures on the induction of c-fos protein(s) in mammalian neurons. Exp Neurol 102:261–263

    Article  PubMed  CAS  Google Scholar 

  • Dragunow M, Currie RW, Faull RLM, Robertson HA, Jansen K (1989) Immediate-early genes, kindling and long-term potentiation. Neurosci Biobehav Rev 13:301–313

    Article  PubMed  CAS  Google Scholar 

  • Dragunow M, Lawlor PA, Chiasson BJ, Robertson HA (1993) Antisense to c-fos suppresses both Fos and Jun B expression in rat striatum and generates apomorphine-and amphetamine-induced rotation. Neuroreport 5:305–306

    Article  PubMed  CAS  Google Scholar 

  • Dragunow M, Tse C, Glass M, Lawlor P (1994) c-fos antisense reduces expression of krox 24 in rat caudate and neocortex. Cell Mol Neurobiol 14:395–405

    Article  PubMed  CAS  Google Scholar 

  • During MJ, Ryder KM, Spencer DD (1995) Hippocampal GABA transporter function in temporal-lobe epilepsy. Nature 376:174–177

    Article  PubMed  CAS  Google Scholar 

  • Ernfors P, Bengzon J, Kokaia Z, Persson H, Lindvall O (1991) Increased levels of messenger RNA for neurotrophic factors in the brain during kindling epileptogenesis. Neuron 7:165–176

    Article  PubMed  CAS  Google Scholar 

  • Gao W-Y, Han F-S, Storm C, Egan W, Cheng Y-C (1991) Phosphorothioate oligonucleotides are inhibitors of human DNA polymerases and RNase H: implications for antisense technology. Mol Pharmacol 41:223–229

    Google Scholar 

  • Geinisman Y, Morrell F, deToledo-Morrell L (1988) Remodelling of synaptic architec-ture during hippocampal “kindling”. Proc Natl Acad Sci U S A 85:3260–3264

    Article  PubMed  CAS  Google Scholar 

  • Gillardon F, Beck H, Uhlmann E, Herdegen T, Sandkuler J, Peyman A, Zimmermann M (1994) Inhibition of c-fos protein expression in rat spinal cord by antisense oligodeoxynucleotide superfusion. Eur J Neurosci 6:880–884

    Article  PubMed  CAS  Google Scholar 

  • Goddard GV, McIntyre D, Leech C (1969) A permanent change in brain function resulting from daily electrical stimulation. Exp Neurol 25:295–330

    Article  PubMed  CAS  Google Scholar 

  • Goelet P, Castellucci VF, Schacher S, Kandel ER (1986) The long and short of longterm memory — a molecular framework. Nature 322:419–422

    Article  PubMed  CAS  Google Scholar 

  • Goodchild J (1989) Inhibition of gene expression by oligonucleotide. In: Cohen JS (ed) Oligonucleotides: antisense inhibitors of gene expression. CRC Press, Boca Raton, pp 53–77

    Google Scholar 

  • Graybiel AM, Moratalla R, Robertson HA (1990) Amphetamine and cocaine induce drug-specific activation of the c-fos gene in striosome-matrix compartments and limbic subdivisions of the striatum. Proc Natl Acad Sci U S A 87:6912–6916

    Article  PubMed  CAS  Google Scholar 

  • Guvakova MA, Yakubov LA, Vlodaysky I, Tonkinson JL, Stein CA (1995) Phosphorothioate oligodeoxynucleotides bind to basic fibroblast growth factor, inhibit its binding to cell surface receptors, and remove it from low affinity binding sites on extracellular matrix. J Biol Chem 270:2620–2627

    Article  PubMed  CAS  Google Scholar 

  • Hebb MO, Robertson HA (1997a) End-capped antisense oligonucleotides effectively inhibit gene expression in vivo and offer a low-toxicity alternative to fully modified phosphorothioate oligodeoxynucleotides. Mol Brain Res (in press)

    Google Scholar 

  • Hebb MO, Robertson HA (1997b) Coordinate suppression of striatal ngfi-a and c-fos produces locomotor asymmetry and upregulation of IEGs in the globus pallidus. Mol Brain Res (in press)

    Google Scholar 

  • Heilig M, Pich EM, Koob GF, Yee F, Wahlestedt C (1992) In vivo down regulation of neuropeptide Y (NPY) Yl receptors by ICV antisense oligodeoxynucleotide administration is associated with signs of anxiety in rats. Soc Neurosci Abstr 642:18

    Google Scholar 

  • Heilig M, Engel JA, Söderpalm B (1993) C-fos antisense in the nucleus accumbens blocks the locomotor stimulant action of cocaine. Eur J Pharmacol 236:339–340

    Article  PubMed  CAS  Google Scholar 

  • Hengerer B, Lindholm D, Heumann R, Ruther U, Wagner EF, Thoenen H (1990) Lesion-induced increase in nerve growth factor mRNA is mediated by c-fos. Proc Natl Acad Sci U S A 87:3899–3903

    Article  PubMed  CAS  Google Scholar 

  • Hirai S-I, Ryseck R-P, Mechta F (1989) Characterization of jun-D: a new member of the jun proto-oncogene family. EMBO J 8:1433–1439

    PubMed  CAS  Google Scholar 

  • Hooper ML, Chiasson BJ, Robertson HA (1994) Infusion into the brain of an antisense oligonucleotide to the immediate-early gene c-fos suppresses production of Fos and produces a behavioral effect. Neuroscience 63:917–924

    Article  PubMed  CAS  Google Scholar 

  • Hosford DA, Simonato M, Cao Z, Garcia-Cairasco N, Silver JM, Butler L, Shin C, McNamara JO (1995) Differences in the anatomic distribution of immediate-early gene expression in amygdala and angular bundle kindling development. J Neurosci 15:2513–2523

    PubMed  CAS  Google Scholar 

  • Hughes P, Dragunow M (1995) Induction of immediate-early genes and the control of neurotransmitter-regulated gene expression within the nervous system. Pharmacol Rev 47:133–178

    CAS  Google Scholar 

  • Hughes P, Singleton K, Dragunow M (1994) MK-801 does not attenuate immediate-early gene expression following an amygdala afterdischarge. Exp Neurol 128:276–283

    Article  PubMed  CAS  Google Scholar 

  • Hunt SP, Pini A, Evan G (1987) Induction of c-fos-like protein in spinal cord neurons following sensory stimulation. Nature 328:632–634

    Article  PubMed  CAS  Google Scholar 

  • Hunter JC, Woodburn VL, Durieux C, Pettersson EKE, Poat JA, Hughes J (1995) Cfos antisense oligodeoxynucleotide increases formalin-induced nociception and regulates preprodynorphin expression. Neuroscience 65:485–492

    Article  PubMed  CAS  Google Scholar 

  • Ji R-R, Zhang Q, Bedecs K, Arvidsson J, Zhang X, Xu X-J, Wiesenfeld-Hallin Z, Bartfai T, Hökfelt (1994) Galanin antisense oligonucleotides reduce galanin levels in dorsal root ganglia and induce autotomy in rats after axotomy. Proc Natl Acad Sci U S A 91:12540–12543

    Article  PubMed  CAS  Google Scholar 

  • Kerppola TK, Curran T (1991a) Fos-Jun heterodimers and Jun homodimers bend DNA in opposite directions: implications for transcription factor cooperativity. Cell 66:317–326

    Article  CAS  Google Scholar 

  • Kerppola TK, Curran T (1991b) DNA bending by Fos and Jun: the flexible hinge model. Science 254:1210–1214

    Article  CAS  Google Scholar 

  • Konradi C, Kobierski LA, Nguyen TV, Heckers S, Hyman SE (1993) The c-AMPresponse-element-binding-protein interacts but Fos protein does not interact, with the proenkephalin enhancer in rat striatum. Proc Natl Acad Sci U S A 90:7005–7009

    Article  PubMed  CAS  Google Scholar 

  • Kouzarides T, Ziff E (1988) The role of the leucine zipper in the fos-jun interaction. Nature 336:646–651

    Article  PubMed  CAS  Google Scholar 

  • Krieg AM (1993) Uptake and efficacy of phosphodiester and modified antisense oligonucleotides in primary cell cultures. Clin Chem 39:710–712

    Google Scholar 

  • Krieg AM, Yi A-K, Matson S, Waldschmidt TJ, Bishop GA, Teasdale R, Koretzky GA, Klinman DM (1995) CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 374:546–548

    Article  PubMed  CAS  Google Scholar 

  • Labiner DM, Butler LS, Cao Z, Hosford DA, Shin C, McNamara JO (1993) Induction of c-fos mRNA by kindled seizures: complex relationship with neuronal burst firing. J Neurosci 13:744–751

    PubMed  CAS  Google Scholar 

  • Lamprecht R, Dudai Y (1996) Transient expression of c-fos in rat amygdala during training is required for encoding conditioned taste aversion memory. Learn Mem 3:31–41

    Article  PubMed  CAS  Google Scholar 

  • Lau LF, Nathans D (1987) Expression of a set of growth-regulated immediate-early genes in BALB/c3T3 cells: coordinate regulation with c-fos or c-myc. Proc Natl Acad Sci U S A 4:1182–1186

    Article  Google Scholar 

  • Lemaire P, Revelant O, Bravo R, Charnay P (1988) Two mouse genes encoding potential transcription factors with identical DNA-binding domains are activated by growth factors in cultured cells. Proc Natl Acad Sci U S A 85:4691–4695

    Article  PubMed  CAS  Google Scholar 

  • Liu PK, Salminen A, He YY, Jiang MH, Xue JJ, Liu JS, Hsu CY (1994) Suppression of ischemia-induced Fos expression and AP-1 activity by an antisense oligodeoxynucleotide to c-fos mRNA. Ann Neurol 36:566–576

    Article  PubMed  CAS  Google Scholar 

  • Maki Y, Bos TJ, Davis C, Starbuck M, Vogt PK (1987) Avian sarcoma virus 17 carries a new oncogene jun. Proc Natl Acad Sci U S A 84:2848–2852

    Article  PubMed  CAS  Google Scholar 

  • Masquilier D, Sassone-Corsi P (1992) Transcriptional cross-talk: nuclear factors CREM and CREB bind to AP-1 sites and inhibit activation by Jun. J Biol Chem 267:22460–22466

    PubMed  CAS  Google Scholar 

  • Matteucci MD, Wagner RW (1996) In pursuit of antisense. Nature 384:20–22 McKnight SL (1991) Molecular zippers in gene regulation. Sci Am 264:54–64

    Google Scholar 

  • Merchant, KM (1994) c-fos antisense oligonucleotide specifically attenuates haloperidol-induced increases in neurotensin/neuromedin N mRNA expression in rat dorsal striatum. Mol Cell Neurosci 5:336–344

    Article  PubMed  CAS  Google Scholar 

  • Milbrandt J (1987) A nerve growth factor-induced gene encodes a possible transcriptional regulatory factor. Science 238:797–799

    Article  PubMed  CAS  Google Scholar 

  • Möller C, Bing O, Heilig M (1994) c-fos Expression in the amygdala: in vivo antisense modulation and role in anxiety. Cell Mol Neurobiol 14:415–423

    Article  PubMed  Google Scholar 

  • Moore SD, Madamba SG, Schweitzer P, Siggins GR (1994) Voltage-dependent effects of opioid peptides on hippocampal CA3 pyramidal neurons in vitro. J Neurosci 14:809–820

    PubMed  CAS  Google Scholar 

  • Moratalla R, Robertson HA, Graybiel AM (1992) Dynamic regulation of NGFI-A (zif268, egrl) gene expression in the striatum. J Neurosci 12:2609–2622

    PubMed  CAS  Google Scholar 

  • Moratalla R, Vickers EA, Robertson HA, Cochran BH, Graybiel AM (1993) Coordinate expression of c-fos and junB is induced in the striatum by cocaine. J Neurosci 13:423–433

    PubMed  CAS  Google Scholar 

  • Morgan JI, Curran T (1991) Stimulus-transcription coupling in the nervous system: Involvement of the inducible proto-oncogenes fos and jun. Annu Rev Neurosci 14:421–451

    Article  PubMed  CAS  Google Scholar 

  • Morgan JI, Cohen DR, Hempstead JL, Curran T (1987) Mapping patterns of c-fos expression in the central nervous system after seizure. Science 237:192–197

    Article  PubMed  CAS  Google Scholar 

  • Morris BJ, Johnston HM (1995) A role for hippocampal Opioids in long-term functional plasticity. Trends Neurosci 18:350–355

    Article  PubMed  CAS  Google Scholar 

  • Nellen W, Lichtenstein C (1993) What makes an mRNA anti-sense-itive? Trends Biochem Sci 18:419–423

    Article  PubMed  CAS  Google Scholar 

  • Nestler EJ, Hope BT, Widnell KL (1993) Drug addiction: a model for the molecular basis of neural plasticity. Neuron 11:995–1006

    Article  PubMed  CAS  Google Scholar 

  • Nishina H, Sato H, Suzuki T, Sato N, Iba H (1990) Isolation and characterisation of Fra-2, an additional member of the fos gene family. Proc Natl Acad Sci U S A 87:3619–3623

    Article  PubMed  CAS  Google Scholar 

  • Nishizuka M, Okada R, Seki K, Arai Y, Iizuka R (1991) Loss of dendritic synapses in the medial amygdala associated with kindling. Brain Res 522:351–355

    Article  Google Scholar 

  • Osen-Sand A, Catsicas M, Stapel JK, Jones KA, Ayala G, Knowles J, Grenningloh G, Catsicas S (1993) Inhibition of axonal growth by SNAP-25 antisense oligonucleotides in vitro and in vivo. Nature 364:445–448

    Article  PubMed  CAS  Google Scholar 

  • Paul ML, Graybiel AM, David J-C, Robertson HA (1992) D1-like and D2-like dopamine receptors synergistically activate rotation and c-fos expression in the dopamine-depleted striatum in a rat model of Parkinson’s disease. J Neurosci 12:3729–3742

    PubMed  CAS  Google Scholar 

  • Paul ML, Currie RW, Robertson HA (1995) Priming of a Dl dopamine receptor behavioural response is dissociated from striatal immediate-early gene activity. Neuroscience 66:347–359

    Article  PubMed  CAS  Google Scholar 

  • Perlin JB, Gerwin CM, Panchision DM, Vicks RS, Jakoi ER, DeLorenzo RJ (1993) Kindling produces long-lasting and selective changes in gene expression of hippocampal neurons. Proc Natl Acad Sci U S A 90:1741–1745

    Article  PubMed  CAS  Google Scholar 

  • Racine RJ (1972) Modification of seizure activity by electrical stimulation: motor seizure. Electroencephalogr Clin Neurophysiol 38:281–294

    Google Scholar 

  • Robertson GS, Herrera DG, Dragunow M, Robertson HA (1989) L-Dopa activates cfos expression in the striatum of 6-hydroxydopamine-lesioned rats. Eur J Pharmacol 159:99–100

    Article  PubMed  CAS  Google Scholar 

  • Robertson GS, Tetzlaff W, Bedard A, St-Jean M, Wigle N (1995) c-fos mediates antipsychotic-induced neurotensin gene expression in the rodent striatum. Neuroscience 67:325–344

    Article  PubMed  CAS  Google Scholar 

  • Robertson HA (1992a) Immediate-early genes, neuronal plasticity, and memory. Biochem Cell Biol 70:729–737

    Article  CAS  Google Scholar 

  • Robertson HA (1992b) Dopamine receptor interactions: some implications for the treatment of Parkinson’s disease. Trends Neurosci 15:201–206

    Article  CAS  Google Scholar 

  • Robertson HA, Peterson MR, Murphy K, Robertson GS (1989) D1-dopamine receptor agonists selectively activate striatal c-fos independent of rotational behaviour. Brain Res 503:346–349

    Article  PubMed  CAS  Google Scholar 

  • Rusak B, Robertson HA, Wisden W, Hunt SP (1990) Light pulses that shift rhythms induce gene expression in the suprachiasmatic nucleus. Science 248:1237–1240

    Article  PubMed  CAS  Google Scholar 

  • Ryder K, Lau LF, Nathans D (1988) A gene activated by growth factors is related to the oncogene v-jun. Proc Natl Acad Sci U S A 85:1487–1491

    Article  PubMed  CAS  Google Scholar 

  • Ryder K, Lanahan A, Perez-Albuerne E, Nathans D (1989) Jun-D: a third member of the Jun gene family. Proc Natl Acad Sci U S A 86:1500–1503

    Article  PubMed  CAS  Google Scholar 

  • Sassone-Corsi P, Sisson JC, Verma IM (1988) Transcriptional autoregulation of the proto-oncogene fos. Nature 334:314–319

    Article  PubMed  CAS  Google Scholar 

  • Sharp FR (1994) The sense of antisense fos oligonucleotides. Ann Neurol 36:555–556

    Article  PubMed  CAS  Google Scholar 

  • Sheng M, Greenberg ME (1990) The regulation and function of c-fos and other immediate-early genes in the nervous system. Neuron 4:477–485

    Article  PubMed  CAS  Google Scholar 

  • Sheng M, McFadden G, Greenberg ME (1990) Membrane depolarization and calcium induce c-fos transcription via phosphorylation of transcription factor CREB. Neuron 4:571–582

    Article  PubMed  CAS  Google Scholar 

  • Shin C, McNamara JO, Morgan JI, Curran T, Cohen DR (1990) Induction of c-fos mRNA expression by afterdischarge in the hippocampus of naive and kindled rats. J Neurochem 55:1050–1055

    Article  PubMed  CAS  Google Scholar 

  • Silvia CP, King GR, Lee TH, Xue Z-Y, Caron MG, Ellinwood EH (1994) Intranigral administration of D2 dopamine receptor antisense oligodeoxynucleotides establishes a role for nigrostriatal D2 autoreceptors in the motor actions of cocaine. Mol Pharmacol 46:51–57

    PubMed  CAS  Google Scholar 

  • Sinomato M, Hosford DA, Labiner DM, Shin C, Mansbach HH, McNamara JO (1991) Differential expression of immediate early genes in the hippocampus in the kindling model of epilepsy. Mol Brain Res 11:115–124

    Article  Google Scholar 

  • Sommer W, Bjelke B, Ganten D, Fuxe K (1993) Antisense oligonucleotide to c-fos induces ipsilateral rotational behavior to d-amphetamine. Neuroreport 5:277–280

    Article  PubMed  CAS  Google Scholar 

  • Sommer W, Rimondini R, O’Connor W, Hansson AC, Ungerstedt U, Fuxe K (1996) Intrastriatal injected c-fos antisense oligonucleotide interferes with striatonigral but not striatopallidal y-aminobutyric acid transmission in the conscious rat. Proc Natl Acad Sci U S A 93:14134–14139

    Article  PubMed  CAS  Google Scholar 

  • Sonnenberg JL, Rauscher JR III, Morgan JI, Curran T (1989) Regulation of proenkephalin by Fos and Jun. Science 246:1622–1625

    Article  PubMed  CAS  Google Scholar 

  • Standifer KM, Chien C-C, Wahlestedt C, Brown GP, Pasternak GW (1994) Selective loss of d opioid analgesia and binding by antisense oligodeoxynucleotides to a d opioid receptor. Neuron 12:805–810

    Article  PubMed  CAS  Google Scholar 

  • Stein CA, Cheng Y-C (1993) Antisense oligonucleotides as therapeutic agents — is the bullet really magical? Science 261:1004–1012

    Article  PubMed  CAS  Google Scholar 

  • Stein CA, Subasinghe C, Shinozuka K, Cohen JS (1988) Physicochemical properties of phosphorothioate oligodeoxynucleotides. Nucleic Acids Res 16:3209–3221

    Article  PubMed  CAS  Google Scholar 

  • Stephenson ML, Zamecnik PC (1978) Inhibition of Rous sarcoma viral RNA translation by specific oligodeoxynucleotide. Nucleic Acid Res 16:3209–3221

    Google Scholar 

  • Struhl K (1991) Mechanisms for diversity in gene expression patterns. Neuron 7:177–181

    Article  PubMed  CAS  Google Scholar 

  • Sukhatme VP, Cao X, Chang LC, Tsai-Morris C-H, Stamenkovich D, Ferreira PCP, Cohen DR, Edwards SA, Shows TB, Curran T, LeBeau MM, Adamson EDA (1988) A zinc finger-encoding gene coregulated with c-fos during growth and differentiation and after cellular depolarization. Cell 53:37–43

    Article  PubMed  CAS  Google Scholar 

  • Sutula T, He XX, Cavazos J, Scott G (1988) Synaptic reorganization in the hippocampus induced by abnormal functional activity. Science 239:1147–1150

    Article  PubMed  CAS  Google Scholar 

  • Terman GW, Wagner JJ, Chavkin C (1994) Kappa opioids inhibit induction of longterm potentiation in the dentate gyrus of the Guinea pig hippocampus. J Neurosci 14:4740–4747

    PubMed  CAS  Google Scholar 

  • Teskey CG, Atkinson BG, Cain DP (1991) Expression of the proto-oncogene c-fos following electrical kindling in the rat. Mol Brain Res 11:1–10

    Article  PubMed  CAS  Google Scholar 

  • Thierry AR, Dritschilo A (1992) Intracellular availability of unmodified, phosphorothioated, and liposomally encapsulated oligodeoxynucleotides for antisense activity. Nucleic Acid Res 20:5691–5698

    Article  PubMed  CAS  Google Scholar 

  • Tseng LF, Collins KA (1994) Antisense oligodeoxynucleotide to a d-opioid receptor given intrathecally blocks ICV administered b-endorphin-induced antinociception in the mouse. Life Sci 55:PL127–131

    Article  Google Scholar 

  • Ungerstedt U (1971a) Striatal dopamine release after amphetamine or nerve degenera-tion revealed by rotational behaviour. Acta Physiol Scand [Suppl] 367:49–68

    CAS  Google Scholar 

  • Ungerstedt U (1971b) Postsynaptic supersensitivity after 6-hydroxydopamine induced degeneration of the nigro-striatal dopamine system. Acta Physiol Scand [Suppl] 367:69–93

    CAS  Google Scholar 

  • Wagner JJ, Terman GW, Chavkin C (1993) Endogenous dynorphins inhibit excitatory neurotransmission and block LTP induction in the hippocampus. Nature 363:451–454

    Article  PubMed  CAS  Google Scholar 

  • Wagner RW (1994) Gene inhibition using antisense oligodeoxynucleotides. Nature 372:333–335

    Article  PubMed  CAS  Google Scholar 

  • Wahlestedt C (1994) Antisense oligonucleotide strategies in neuropharmacology. Trends Pharmacol Sci 15:42–46

    Article  PubMed  CAS  Google Scholar 

  • Wahlestedt C, Golanov E, Yamamoto S, Yee F, Ericson H, Yoo H, Inturrisi CE, Reis DJ (1993a) Antisense oligonucleotides to NMDA-R1 receptor channel protect cortical neurons from excitotoxicity and reduce focal ischaemic infarctions. Nature 363:260–263

    Article  CAS  Google Scholar 

  • Wahlestedt C, Pich EM, Koob GF, Yee F, Heilig M (1993b) Modulation of anxiety and neuropeptide Y-Y1 receptors by antisense oligodeoxynucleotides. Science 259:528–531

    Article  CAS  Google Scholar 

  • Watanabe Y, Johnson RS, Butler LS, Binder DK, Spiegelman BM, Papaioannou VE, McNamara JO (1996) Null mutation of c-fos impairs structural and functional plasticities in the kindling model of epilepsy. J Neurosci 16:3827–3836

    PubMed  CAS  Google Scholar 

  • Weiss B, Zhou L-W, Zhang S-P, Qin Z-H (1993) Antisense oligodeoxynucleotide inhibits DZ Dopamine receptor-mediated behavior and DZ messenger RNA. Neuroscience 55:607–612

    Article  PubMed  CAS  Google Scholar 

  • Whitesell L, Geselowitz D, Chavany C, Fahmy B, Walbridge S, Alger JR, Neckers LM (1993) Stability, clearance, and disposition of intraventricularly administered oligodeoxynucleotides: implications for therapeutic application within the central nervous system. Proc Natl Acad Sci U S A 90:4665–4669

    Article  PubMed  CAS  Google Scholar 

  • Wisden W, Errington ML, Williams S, Dunnett SB, Waters C, Hitchcock D, Evan G, Bliss TVP, Hunt SP (1990) Differential expression of immediate-early genes in the hippocampus and spinal cord. Neuron 4:603–614

    Article  PubMed  CAS  Google Scholar 

  • Wollnik F, Brysch W, Uhlmann E, Gillardon F, Bravo R, Zimmermann M, Schlingensiepen KH, Herdegen T (1995) Block of c-fos and jun-B expression by antisense-oligonucleotides inhibits light-induced phase shifts of the mammalian circadian clock. Eur J Neurosci 7:388–393

    Article  PubMed  CAS  Google Scholar 

  • Woolf TM, Jennings GB, Rebagliati M, Melton DA (1990) The stability, toxicity and effectiveness of unmodified and phosphorothioate antisense oligodeoxynucleotides in Xenopus oocytes and embryos. Nucleic Acids Res 18:1763–1769

    Article  PubMed  CAS  Google Scholar 

  • Woolf TM, Melton DA, Jennings CGB (1992) Specificity of antisense oligonucleotides in vivo (Xenopus oocytes). Proc Natl Acad Sci U S A 89:7305–7309

    Article  PubMed  CAS  Google Scholar 

  • Yee F, Ericson H, Reis DJ, Wahlestedt C (1994) Cellular uptake of intracerebroventricularly administered biotin-or digoxigenin-labeled antisense oligodeoxynucleotides in the rat. Cell Mol Neurobiol 14:475–486

    Article  PubMed  CAS  Google Scholar 

  • Zamecnik PC, Stephenson NL (1978) Inhibition of Rous sarcoma virus replication and cell transformation by a specific oligodeoxynucleotide. Proc Natl Acad Sci U S A 75:280–294

    Article  PubMed  CAS  Google Scholar 

  • Zerial M, Toschi L, Ryseck R-P, Schuermann M, Muller R, Bravo R (1989) The product of a novel growth factor activated gene, fos-B, interacts with JUN proteins enhancing their DNA binding activity. EMBO J 8:805–813

    PubMed  CAS  Google Scholar 

  • Zhang M, Creese I (1993) Antisense oligonucleotide reduces brain dopamine D2 receptor: behavioral correlates. Neurosci Lett 161:223–226

    Article  PubMed  CAS  Google Scholar 

  • Zhou LM, Zhang SP, Qin ZH, Weiss B (1994) In vivo administration of an oligonucleotide antisense to the D2 dopamine receptor messenger RNA inhibits D2 dopamine receptor mediated behavior and the expression of D2 dopamine receptors in mouse striatum. J Pharmacol Exp Ther 268:1015–1023

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chiasson, B.J., Hebb, M.O., Robertson, H.A. (1998). Pharmacological Effects of Antisense Oligonucleotide Inhibition of Immediate-Early Response Genes in the CNS. In: Crooke, S.T. (eds) Antisense Research and Application. Handbook of Experimental Pharmacology, vol 131. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58785-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58785-6_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63730-8

  • Online ISBN: 978-3-642-58785-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics