Advertisement

Basic Principles of Antisense Therapeutics

  • S. T. Crooke
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 131)

Abstract

During the past few years, interest in developing antisense technology and in exploiting it for therapeutic purposes has been intense. Although progress has been gratifyingly rapid, the technology remains in its infancy and the questions that remain to be answered still outnumber the questions for which there are answers. Appropriately, considerable debate continues about the breadth of the utility of the approach and about the type of data required to “prove that a drug works through an antisense mechanism.”

Keywords

Antisense Oligonucleotide Human Immune Deficiency Virus Antisense Oligodeoxynucleotide Phosphorothioate Oligonucleotide Antisense Drug 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abe J, Zhou W, Taguchi J, Takuwa N, Miki K, Okazaki H, Kurokawa K, Kumada M, Takuwa Y (1994) Suppression of neointimal smooth muscle cell accumulation in vivo by antisense CDC2 and CDK2 oligonucleotides in rat carotid artery. Biochem Biophys Res Commun 198:16–24PubMedCrossRefGoogle Scholar
  2. Adams JU, Chen XH, deRiel JK, Adler MW, Liu-Chen LY (1994) In vivo treatment with antisense oligodeoxynucleotide to kappa-opioid receptors inhibited kappaagonist-induced analgesia in rats. Regul Pept 54:1–2CrossRefGoogle Scholar
  3. Agrawal S, Goodchild J, Civeira MP, Thornton AH, Sarin PS, Zamecnik PC (1988) Oligodeoxynucleoside phosphoramidates and phosphorothioates as inhibitors of human immunodeficiency virus. Proc Natl Acad Sci U S A 85:7079–7083PubMedCrossRefGoogle Scholar
  4. Agrawal S, Temsamani J, Tang JY (1991) Pharmacokinetics, biodistribution, and stability of oligodeoxynucleotide phosphorothioates in mice. Proc Natl Acad Sci U S A 88:7595–7599PubMedCrossRefGoogle Scholar
  5. Agrawal S, Zhang X, Lu Z, Zhao H, Tamburin JM, Yan J, Cai H, Diasio RB, Habus I, Jiang Z, Iyer RP, Yu D, Zhang R (1995) Absorption, tissue distribution and in vivo stability in rats of a hybrid antisense oligonucleotide following oral administration. Biochem Pharmacol 50(4):571–576PubMedCrossRefGoogle Scholar
  6. Akabayashi A, Wahlestedt C, Alexander JT, Leibowitz SF (1994) Specific inhibition of endogenous neuropeptide Y synthesis in arcuate nucleus by antisense oligonucleotides suppresses feeding behavior and insulin secretion. Mol Brain Res 21:55–61PubMedCrossRefGoogle Scholar
  7. Akino K, Ohtsuru A, Yano H, Ozeki S, Namba H, Nakashima M, Ito M, Matsumoto T, Yamashita S (1996) Antisense inhibition of parathyroid hormone-related peptide gene expression reduces malignant pituitary tumor progression and metastases in the rat. Cancer Res 56(1):77–86PubMedGoogle Scholar
  8. Amaratunga A, Morin PJ, Kosik KS, Fine RE (1993) Inhibition of kinesin synthesis and rapid anterograde axonal transport in vivo by an antisense oligonucleotide. J Biol Chem 268(23):17427–17430PubMedGoogle Scholar
  9. Ambuhl P, Gyurko R, Phillips MI (1995) A decrease in angiotensin receptor binding in rat brain nuclei by antisense oligonucleotides to the angiotensin AT1 receptor. Regul Pept 59(2):171–182PubMedCrossRefGoogle Scholar
  10. Azad RF, Driver VB, Tanaka K, Crooke RM, Anderson KP (1993) Antiviral activity of a phosphorothioate oligonucleotide complementary to RNA of the human cytomegalovirus major immediate-early region. Antimicrob Agents Chemother 37(9):1945–1954PubMedCrossRefGoogle Scholar
  11. Baker BF (1993) “Decapitation” of a 5’-capped oligoribonucleotide by openanthroline:Cu(II). J Am Chem Soc 115:3378–3379CrossRefGoogle Scholar
  12. Baker BF, Miraglia L, Hagedorn CH (1992) Modulation of eucaryotic initiation factor-4E binding to 5’-capped oligoribonucleotides by modified anti-sense oligonucleotides. J Biol Chem 267:11495–11499PubMedGoogle Scholar
  13. Barton CM, Lemoine NR (1995) Antisense oligonucleotides directed against p53 have antiproliferative effects unrelated to effects on p53 expression. Br J Cancer 71:429–437PubMedCrossRefGoogle Scholar
  14. Bayever E, Iversen PL, Bishop MR, Sharp JG, Tewary HK, Arneson MA, Pirruccello SJ, Ruddon RW, Kessinger A, Zon G (1993) Systemic administration of a phosphorothioate oligonucleotide with a sequence complementary to p53 for acute myelogenous leukemia and myelodysplastic syndrome: initial results of a phase I trial. Antisense Res Dev 3(4):383–390PubMedGoogle Scholar
  15. Bellon L, Leydier C, Barascut JL (1994) 4-Thio RNA: a novel class of sugar-modified B-RNA. In: Sanghvi YS, Cook PD (eds) Carbohydrate modifications in antisense research. American Chemical Society, Washington DC, pp 68–79CrossRefGoogle Scholar
  16. Bennett CF, Crooke ST (1996) Oligonucleotide-based inhibitors of cytokine expression and function. In: Henderson B, Bodmer MW (eds) Therapeutic modulation of cytokines. CRC Press, Boca Raton, pp 171–193Google Scholar
  17. Bennett CF, Chiang MY, Chan H, Shoemaker JEE, Mirabelli CK (1992) Cationic lipids enhance cellular uptake and activity of phosphorothioate antisense oligonucleotides. Mol Pharmacol 41:1023–1033PubMedGoogle Scholar
  18. Bennett CF, Chiang MY, Chan H, Grimm S (1993) Use of cationic lipids to enhance the biological activity of antisense oligonucleotides. J Liposome Res 3:85–102CrossRefGoogle Scholar
  19. Bennett CF, Kornbrust D, Henry S, Stecker K, Howard R, Cooper S, Dutson S, Hall W, Jacoby HI (1997) An ICAM-1 antisense oligonucleotide prevents and reverses dextran sulfate sodium-induced colitis in mice. J Pharmacol Exp Ther 280(2):988–1000PubMedGoogle Scholar
  20. Boutonne A, Huet C, Saison T (1991) Cell penetration studies of oligonucleotide derivatized with cholesterol and porphyrins. Conference proceedings on nucleic acid therapeutics, pp 1–60.Google Scholar
  21. Breslauer KJ, Frank R, Blocker H, Marky LA (1986) Predicting DNA duplex stability from base sequence. Proc Natl Acad Sci U S A 83:3746–3750PubMedCrossRefGoogle Scholar
  22. Burch RM, Mahan LC (1991) Oligonucleotides antisense to the interleukin 1 receptor mRNA block the effects of interleukin 1 in cultured murine and human fibroblasts and in mice. J Clin Invest 88:1190–1196PubMedCrossRefGoogle Scholar
  23. Burgess TL, Fisher EF, Ross SL, Bready JV, Qian YX, Bayewitch LA, Cohen AM, Herrera CJ, Hu SSF, Kramer TB, Lott FD, Martin FH, Pierce GF, Simonet L, Farrell CL (1995) The antiproliferative activity of c-myb and c-myc antisense oligonucleotides in smooth muscle cells is caused by a nonantisense mechanism. Proc Natl Acad Sci U S A 92:4051–4055PubMedCrossRefGoogle Scholar
  24. Campbell JM, Bacon TA, Wickstrom E (1990) Oligodeoxynucleoside phosphorothioate stability in subcellular extracts, culture media, sera and cerebrospinal fluid. J Biochem Biophys Methods 20:259–267PubMedCrossRefGoogle Scholar
  25. Castro-Alamancos MA, Torres-Aleman I (1994) Learning of the conditioned eye-blink response is impaired by an antisense insulin-like growth factor I oligonucleotide. Proc Natl Acad Sci U S A 91:10203–10207PubMedCrossRefGoogle Scholar
  26. Cazenave C, Stein CA, Loreau N, Thuong NT, Neckers LM, Subasinghe C, Helene C, Cohen JS, Toulme JJ (1989) Comparative inhibition of rabbit globin mRNA translation by modified antisense oligodeoxynucleotides. Nucleic Acids Res 17:4255–4273PubMedCrossRefGoogle Scholar
  27. Cha XY, Xu H, Ni Q, Partilla JS, Rice KC, Matecka D, Calderon SN, Porreca F, Lai J, Rothman RB (1995) Opioid peptide receptor studies. 4. Antisense oligodeoxynucleotide to the delta opioid receptor delineates opioid receptor subtypes. Regul Pept 59(2):247–253PubMedCrossRefGoogle Scholar
  28. Cheng Y, Gao W, Han F (1991) Phosphorothioate oligonucleotides as potential antiviral compounds against human immunodeficiency virus and herpes viruses. Nucleosides Nucleotides 10:155–166CrossRefGoogle Scholar
  29. Chiang MY, Chan H, Zounes MA, Freier SM, Lima WF, Bennett CF (1991) Antisense oligonucleotides inhibit intercellular adhesion molecule 1 expression by two distinct mechanisms. J Biol Chem 266:18162–18171PubMedGoogle Scholar
  30. Chiasson BJ, Hooper ML, Murphy PR, Robertson HA (1992) Antisense oligonucleotide eliminates in vivo expression of c-fos in mammalian brain. Eur J Pharmacol 227:451–453PubMedCrossRefGoogle Scholar
  31. Chrisey LA, Walz SE, Pazirandeh M, Campbell JR (1993) Internalization of oligodeoxyribonucleotides by Vibrio parahaemolyticus. Antisense Res Dev 3:367–381PubMedGoogle Scholar
  32. Cohen JS (1993) Phosphorothioate oligodeoxynucleotides. In: Crooke ST, Lebleu B(eds) Antisense research and applications. CRC Press, Boca Raton, pp 205–222 Colby CJ (1971) The induction of interferon by natural and synthetic polynucleotides.Prog Nucleic Acid Res Mol Biol 11:1–32Google Scholar
  33. Cook PD (1993) Medicinal chemistry strategies for antisense research. In: Crooke ST, Lebleu B (eds) Antisense research and applications. CRC Press, Boca Raton, pp 149–187Google Scholar
  34. Cornish KG, Iversen P, Smith L, Arneson M, Bayever E (1993) Cardiovascular effects of a phosphorothioate oligonucleotide to p53 in the conscious rhesus monkey. Pharmacol Commun 3:239–247Google Scholar
  35. Cossum PA, Sasmor H, Dellinger D, Truong L, Cummins L, Owens SR, Markham PM, Shea JP, Crooke S (1993) Disposition of the 14C-labeled phosphorothioate oligonucleotide ISIS 2105 after intravenous administration to rats. J Pharmacol Exp Ther 267:1181–1190PubMedGoogle Scholar
  36. Cossum PA, Truong L, Owens SR, Markham PM, Shea JP, Crooke ST (1994) Pharmacokinetics of a 14C-labeled phosphorothioate oligonucleotide, ISIS 2105, after intradermal administration to rats. J Pharmacol Exp Ther 269:89–94PubMedGoogle Scholar
  37. Cowsert LM (1993) Antiviral activities of antisense oligonucleotides. In: Crooke ST, Lebleu B (eds) Antisense research and applications. CRC Press, Boca Raton, pp 521–533Google Scholar
  38. Cowsert LM, Fox MC, Zon G, Mirabelli CK (1993) In vitro evaluation of phosphorothioate oligonucleotides targeted to the E2 mRNA of papillomavirus: potential treatment of genital warts. Antimicrob Agents Chemother 37:171–177PubMedCrossRefGoogle Scholar
  39. Crooke RM (1991) In vitro toxicology and pharmacokinetics of antisense oligonucleotides. Anticancer Drug Des 6:609–646PubMedGoogle Scholar
  40. Crooke RM (1993a) Cellular uptake, distribution and metabolism of phosphorothioate, phosphodiester, and methylphosphonate oligonucleotides. In: Crooke ST, Lebleu B (eds) Antisense research and applications. CRC Press, Boca Raton, pp 427–449Google Scholar
  41. Crooke RM (1993b) In vitro and in vivo toxicology of first generation analogs. In: Crooke ST, Lebleu B (eds) Antisense research and applications. CRC Press, Boca Raton, pp 471–492Google Scholar
  42. Crooke RM, Graham MJ, Cooke ME, Crooke ST (1995) In vitro pharmacokinetics of phosphorothioate antisense oligonucleotides. J Pharmacol Exp Ther 275(1):462–473PubMedGoogle Scholar
  43. Crooke RM, Crooke ST, Graham MJ, Cooke ME (1996) Effect of antisense oligonucleotides on cytokine release from human keratinocytes in an in vitro model of skin. Toxicol Appl Pharmacol 140:85–93PubMedCrossRefGoogle Scholar
  44. Crooke ST (1992) Therapeutic applications of oligonucleotides. Annu Rev Pharmacol Toxicol 32:329–376PubMedCrossRefGoogle Scholar
  45. Crooke ST (1993) Progress toward oligonucleotide therapeutics: pharmacodynamic properties. FASEB J 7:533–539PubMedGoogle Scholar
  46. Crooke ST (1995a) Oligonucleotide therapeutics. In: Wolff ME (ed) Burger’s medicinal chemistry and drug discovery, vol 1. Wiley, New York, pp 863–900Google Scholar
  47. Crooke ST (1995b) Therapeutic applications of oligonucleotides. Landes, Austin rooke ST, Lebleu B (1993) Antisense research and applications. CRC Press, Boca RatonGoogle Scholar
  48. Crooke ST, Grillone LR, Tendolkar A, Garrett A, Fratkin MJ, Leeds J, Barr WH (1994) A pharmacokinetic evaluation of 14C-labeled afovirsen sodium in patients with genital warts. Clin Pharm Ther 56:641–646CrossRefGoogle Scholar
  49. Crooke ST, Lemonidis KM, Nielson L, Griffey R, Monia BP (1995) Kinetic characteristics of E. coli RNase Hl: cleavage of various antisense oligonucleotides—RNA duplexes. Biochem J 312(2):599–608Google Scholar
  50. Crooke ST, Graham MJ, Zuckerman JE, Brooks D, Conklin BS, Cummins LL, Greig MJ, Guinosso CT, Kornbrust D, Manoharan M, Sasmor HM, Schleich T, Tivel KL, Griffey RH (1996) Pharmacokinetic properties of several novel oligonucleotide analogs in mice. J Pharmacol Exp Ther 277(2):923–937PubMedGoogle Scholar
  51. Crouch RJ, Dirksen ML (1985) Ribonucleases H. In: Linn SM, Roberts RJ (eds) Nucleases. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, p 211Google Scholar
  52. Crum C, Johnson JD, Nelson A, Roth D (1988) Complementary oligodeoxynucleotide mediated inhibition of tobacco mosaic virus RNA translation in vitro. Nucleic Acids Res 16(10):4569–4581PubMedCrossRefGoogle Scholar
  53. Dean NM, McKay R (1994) Inhibition of protein kinase C-alpha expression in mice after systemic administration of phosphorothioate antisense oligodeoxynucleotides. Proc Natl Acad Sci U S A 91:11762–11766PubMedCrossRefGoogle Scholar
  54. Dean NM, McKay R, Miraglia L, Howard R, Cooper S, Giddings J, Nicklin P, Meister L, Zeil R, Geiger T, Muller M, Fabbro D (1996) Inhibition of growth of human tumor cell lines in nude mice by an antisense oligonucleotide inhibitor of PKCalpha expression. Cancer Res 56(15):3499–3507PubMedGoogle Scholar
  55. De Clercq E, Eckstein F, Merigan TC (1969) Interferon induction increased through chemical modification of synthetic polyribonucleotide. Science 165:1137–1140PubMedCrossRefGoogle Scholar
  56. De Mesmaeker A, Haener R, Martin P, Moser HE (1995) Antisense oligonucleotides. Acc Chem Res 28(9):366–374CrossRefGoogle Scholar
  57. Desjardins J, Mata J, Brown T, Graham D, Zon G, Iversen P (1995). Cholesteryl-conjugated phosphorothioate oligodeoxynucleotides modulate CYP2B1 expression in vivo. J Drug Targeting 2:477–485CrossRefGoogle Scholar
  58. Dominski Z, Kole R (1993) Restoration of correct splicing in thalassemic pre-mRNA by antisense oligonucleotides. Proc Natl Acad Sci U S A 90:8673–8677PubMedCrossRefGoogle Scholar
  59. Donis-Keller H (1979) Site specific enzymatic cleavage of RNA. Nucleic Acids Res 7:179–192PubMedCrossRefGoogle Scholar
  60. Ecker DJ (1993) Strategies for invasion of RNA secondary structure. In: Crooke ST, Lebleu R (eds) Antisense research and applications. CRC Press, Boca Raton, pp 387–400Google Scholar
  61. Ecker DJ, Vickers TA, Bruice TW, Freier SM, Jenison RD, Manoharan M, Zounes M (1992) Pseudo—half-knot formation with RNA. Science 257:958–961PubMedCrossRefGoogle Scholar
  62. Eder PS, Walder JA (1991) Ribonuclease H from K562 human erythroleukemia cells. J Biol Chem 266:6472–6479PubMedGoogle Scholar
  63. Flanagan LM, McCarthy MM, Brooks PJ, Pfaff DW, McEwen BS (1993) Arginine vasopressin levels after daily infusions of antisense oligonucleotides into the supraoptic nucleus. Ann N Y Acad Sci 689:520–521PubMedCrossRefGoogle Scholar
  64. Freier SM (1993) Hybridization considerations affecting antisense drugs. In: Crooke ST, Lebleu B (eds) Antisense research and applications. CRC Press, Boca Raton, pp 67–82Google Scholar
  65. Furdon PJ, Dominski Z, Kole R (1989) RNase H cleavage of RNA hybridized to oligonucleotides containing methylphosphonate, phosphorothioate and phosphodiester bonds. Nucleic Acids Res 17:9193–9204PubMedCrossRefGoogle Scholar
  66. Gagnor C, Bertrand JR, Thenet S, Lemaitre M, Morvan F, Rayner B, Malvy C, Lebleu B, Imbach JL, Paoletti C (1987) Alpha-DNA. VI: comparative study of alpha-and beta-anomeric oligodeoxyribonucleotides in hybridization to mRNA and in cell free translation inhibition. Nucleic Acids Res 15(24):10419–10436PubMedCrossRefGoogle Scholar
  67. Gagnor C, Rayner B, Leonetti JP, Imbach JL, Lebleu B (1989) Alpha-DNA. IX: parallel annealing of alpha-anomeric oligodeoxyribonucleotides to natural mRNA is required for interference in RNase H mediated hydrolysis and reverse transcription. Nucleic Acids Res 17(13):5107–5114PubMedCrossRefGoogle Scholar
  68. Galbraith WM, Hobson WC, Giclas PC, Schechter PJ, Agrawal S (1994) Complement activation and hemodynamic changes following intravenous administration of phosphorothioate oligonucleotides in the monkey. Antisense Res Dev 4(3):201–206PubMedGoogle Scholar
  69. Gao WY, Han FS, Storm C, Egan W, Cheng YC (1992) Phosphorothioate oligonucleotides are inhibitors of human DNA polymerases and RNase H: implications for antisense technology. Mol Pharmacol 41:223–229PubMedGoogle Scholar
  70. Giles RV, Tidd DM (1992) Increased specificity for antisense oligodeoxynucleotide targeting of RNA cleavage by RNase H using chimeric methylphosphonodiester/ phosphodiester structures. Nucleic Acids Res 20:763–770PubMedCrossRefGoogle Scholar
  71. Giles RV, Spiller DG, Tidd DM (1995) Detection of ribonuclease H-generated mRNA fragments in human leukemia cells following reversible membrane permeabilization in the presence of antisense oligodeoxynucleotides. Antisense Res Dev 5:23–31PubMedGoogle Scholar
  72. Gillardon F, Beck H, Uhlmann E, Herdegen T, Sandkohler J, Peyman A, Zimmermann M (1994) Inhibition of c-fos protein expression in rat spinal cord by antisense oligodeoxynucleotide superfusion. Eur J Neurosci 6:880–884PubMedCrossRefGoogle Scholar
  73. Glover JM, Leeds JM, Mant TGK, Kisner DL, Zuckerman J, Levin AA, Shanahan WR (in press) Phase I safety and pharmacokinetic profile of an ICAM-1 antisense oligodeoxynucleotide (ISIS 2302). J Pharmacol Exp TherGoogle Scholar
  74. Graham MJ, Freier SM, Crooke RM, Ecker DJ, Maslova RN, Lesnik EA (1993) Tritium labeling of antisense oligonucleotides by exchange with tritiated water. Nucleic Acids Res 21:3737–3743PubMedCrossRefGoogle Scholar
  75. Gutierrez AJ, Terhorst TJ, Matteucci MD, Froehler BC (1994) 5-heteroaryl-2’deoxyuridine analogs. Synthesis and incorporation into high-affinity oligonucleotides. J Am Chem Soc 116:5540–5544CrossRefGoogle Scholar
  76. Gyurko R, Wielbo D, Phillips MI (1993) Antisense inhibition of AT1 receptor mRNA and angiotensinogen mRNA in the brain of spontaneously hypertensive rats reduces hypertension of neurogenic origin. Regul Pept 49:167–174PubMedCrossRefGoogle Scholar
  77. Haeuptle MT, Frank R, Dobberstein B (1986) Translation arrest by oligodeoxynucleotides complementary to mRNA coding sequences yields polypeptides of predetermined length. Nucleic Acids Res 14(3):1427–1448PubMedCrossRefGoogle Scholar
  78. Hall J, Husken D, Pieles U, Moser HE, Haner R (1994) Efficient sequence-specific cleavage of RNA using novel europium complexes conjugated to oligonucleotides. Chem Biol 1(3):185–190PubMedCrossRefGoogle Scholar
  79. Hanvey JC, Peffer NC, Bisi JE, Thomson SA, Cadilla R, Josey JA, Ricca DJ, Hassman CF, Bonham MA, Au KG, Carter SG, Bruckenstein DA, Boyd AL, Noble SA, Babiss LE (1992) Antisense and antigene properties of peptide nucleic acids. Science 258:1481–1485PubMedCrossRefGoogle Scholar
  80. Hartmann G, Krug A, Waller-Fontaine K, Endres S (1996) Oligodeoxynucleotides enhance lipopolysaccharide-stimulated synthesis of tumor necrosis factor: dependence on phosphorothioate modification and reversal by heparin. Mol Med 2(4):429–438PubMedGoogle Scholar
  81. Hawley P, Gibson I (1996) Interaction of oligodeoxynucleotides with mammilian cells. Antisense Nucleic Drug Dev 6:185–195CrossRefGoogle Scholar
  82. Heilig M, Engel JA, Soderpalm B (1993) C-fos antisense in the nucleus accumbens blocks the locomotor stimulant action of cocaine. Eur J Pharmacol 236:339–340PubMedCrossRefGoogle Scholar
  83. Helene C, Toulme JJ (1989) Control of gene expression by oligonucleotides covalently linked to intercalating agents and nucleic acid-cleaving reagents. In: Cohen JS (ed) Oligonucleotides: antisense inhibitors of gene expression. CRC Press, Boca Raton, pp 137–172Google Scholar
  84. Henry S, Giclas PC, Leeds J, Pangburn M, Auletta C, Levin AA, Kornbrust DJ (1997a) Activation of the alternative pathway of complement by a phosphorothioate oligonucleotide: potential mechansim of action. J Pharmacol Exp Ther 281:810–816Google Scholar
  85. Henry S, Novotny W, Leeds J (1997b) Inhibition of clotting parameters by a phosphorothioate oligonucleotide (in press)Google Scholar
  86. Henry SP, Grillone LR, Orr JL, Brunner RH, Kornbrust DJ (1997e) Comparison of the toxicity profiles of ISIS 1082 and ISIS 2105, phosphorothioate oligonucleotides, following subacute intradermal administration in Sprague-Dawley rats. Toxicology 116(1–3):77–88CrossRefGoogle Scholar
  87. Henry SP, Taylor J, Midgley L, Levin AA, Kornbrust DJ (1997d) Evaluation of the toxicity profile of ISIS 2302, a phosphorothioate oligonucleotide in a 4-week study in CD-1 mice. Antisense Nucleic Acid Drug Dev (in press)Google Scholar
  88. Henry SP, Zuckerman JE, Rojko J, Hall WC, Harman RJ, Kitchen D, Crooke ST (1997e) Toxicologic properties of several novel oligonucleotide analogs in mice. Anticancer Drug Des 12(1):1–14Google Scholar
  89. Hertl M, Neckers LM, Katz SI (1995) Inhibition of interferon-gamma-induced intercellular adhesion molecule-1 expression on human keratinocytes by phosphorothioate antisense oligodeoxynucleotides is the consequence of antisensespecific and antisense-non-specific effects. J Invest Dermatol 104:813–818PubMedCrossRefGoogle Scholar
  90. Higgins KA, Perez JR, Coleman TA, Dorshkind K, McComas WA, Sarmiento UM, Rosen CA, Narayanan R (1993) Antisense inhibition of the p65 subunit of NFkappaB blocks tumorigenicity and causes tumor regression. Proc Natl Acad Sci U S A 90:9901–9905PubMedCrossRefGoogle Scholar
  91. Hijiya N, Zhang J, Ratajczak MZ, Kant JA, DeRiel K, Herlyn M, Zon G, Gewirtz AM (1994) Biologic and therapeutic significance of MYB expression in human melanoma. Proc Natl Acad Sci U S A 91(10):4499–4503PubMedCrossRefGoogle Scholar
  92. Hodges D, Crooke ST (1995) Inhibition of splicing of wild-type and mutated luciferaseadenovirus pre-mRNA by antisense oligonucleotides. Mol Pharmacol 48:905–918PubMedGoogle Scholar
  93. Hoke GD, Draper K, Freier SM, Gonzalez C, Driver VB, Zounes MC, Ecker DJ (1991) Effects of phosphorothioate capping on antisense oligonucleotide stability, hybridization and antiviral efficacy versus herpes simplex virus infection. Nucleic Acids Res 19:5743–5748PubMedCrossRefGoogle Scholar
  94. Hooper ML, Chiasson BJ, Robertson HA (1994) Infusion into the brain of an antisense oligonucleotide to the immediate-early gene c-fos suppresses production of fos and produces a behavioral effect. Neuroscience 63:917–924PubMedCrossRefGoogle Scholar
  95. Hughes JA, Avrutskaya AV, Brouwer KLR, Wickstrom E, Juliano RL (1995) Radio-labeling of methylphosphonate and phosphorothioate oligonucleotides and evaluation of their transport in everted rat jejunum sacs. Pharm Res 12:817–824PubMedCrossRefGoogle Scholar
  96. Hutcherson SL, Palestine AG, Cantrill HL, Lieberman RM, Holland GN, Anderson KP (1995) Antisense oligonucleotide safety and efficacy for CMV retinitis in AIDS patients. Conference Proceedings of 35th Interscience Conference on Antimicrobial Agents and Chemotherapy (ICAAC), 17–20 September 1995, San Francisco, p 204Google Scholar
  97. Inoue H, Imura A, Ohtsuka E (1985) Synthesis and hybridization of dodecadeoxyribonucleotides containing a fluorescent pyridopyrimidine deoxynucleoside. Nucleic Acids Res 13(19):7119–7128PubMedCrossRefGoogle Scholar
  98. Iversen P (1991) In vivo studies with phosphorothioate oligonucleotides: pharmacokinetics prologue. Anticancer Drug Des 6(6):531–538PubMedGoogle Scholar
  99. Joos RW, Hall WH (1969) Determination of binding constants of serum albumin for penicillin. J Pharmacol Exp Ther 166:113PubMedGoogle Scholar
  100. Katz SM, Browne B, Pham T, Wang ME, Bennett CF, Stepkowski SM, Kahan BD (1995) Efficacy of ICAM-1 antisense oligonucleotide in pancreatic islet trans-planation. Transplant Proc 27(6):3214PubMedGoogle Scholar
  101. Kawasaki AM, Casper MD, Freier SM, Lesnik EA, Zounes MC, Cummins LL, Gonzalez C, Cook PD (1993) Uniformly modified 2’-deoxy-2’-fluoro phosphorothioate oligonucleotides as nuclease-resistant antisense compounds with high affinity and specificity for RNA targets. J Med Chem 36:831–841PubMedCrossRefGoogle Scholar
  102. Kindy MS (1994) NMDA receptor inhibition using antisense oligonucleotides prevents delayed neuronal death in gerbil hippocampus following cerebral ischemia. Neurosci Res Commun 14:175–183Google Scholar
  103. Kitajima I, Shinohara T, Bilakovics J, Brown DA, Xiao X, Nerenberg M (1992) Ablation of transplanted HTLV-1 tax-transformed tumors in mice by antisense inhibition of NF-KB. Science 258:1792–1795PubMedCrossRefGoogle Scholar
  104. Konradi C, Cole RL, Heckers S, Hyman SE (1994) Amphetamine regulates gene expression in rat striatum via transcription factor CREB. J Neurosci 14:5623–5634PubMedGoogle Scholar
  105. Krieg AM, Yi AK, Matson S, Waldschmidt TJ, Bishop GA, Teasdale R, Koretzky GA, Klinman DM (1995) CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 374:546–549PubMedCrossRefGoogle Scholar
  106. Kulka M, Smith CC, Aurelian L, Fishelevich R, Meade K, Miller P, Ts’o POP (1989) Site specificity of the inhibitory effects of oligo(nucleoside methylphosphonate)s complementary to the acceptor splice junction of herpes simplex virus type 1 immediate early mRNA 4. Proc Natl Acad Sci U S A 86:6868–6872PubMedCrossRefGoogle Scholar
  107. Kumasaka T, Quinlan WM, Doyle NA, Condon TP, Sligh J, Takei F, Beaudet AL, Bennett CF, Doerschuk CM (1996) The role of the intercellular adhesion molecule-1 (ICAM-1) in endotoxin-induced pneumonia evaluated using ICAM-1 antisense oligonucleotides, anti-ICAM-1 monoclonal antibodies, and ICAM-1 mutant mice. J Clin Invest 97(10):2362–2369PubMedCrossRefGoogle Scholar
  108. Kuramoto E, Yano O, Kimura Y, Baba M, Makino T, Yamamoto S, Yamamoto T, Kataoka T, Tokunaga T (1992) Oligonucleotide sequences required for natural killer cell activation. Jpn J Cancer Res 83(11):1128–1131PubMedCrossRefGoogle Scholar
  109. Lai J, Bilsky EJ, Rothman RB, Porreca F (1994) Treatment with antisense oligodeoxynucleotide to the opioid-8 receptor selectively inhibits 82-agonist antinociception. Neuroreport 5:1049–1052PubMedCrossRefGoogle Scholar
  110. Lamond AI, Sproat BS (1993) Antisense oligonucleotides made of 2’-O-alky1RNA: their properties and applications in RNA biochemistry. FEBS Lett 325:123–127PubMedCrossRefGoogle Scholar
  111. LeMaitre M, Bayard B, Lebleu B (1987) Specific antiviral activity of a poly(L-lysine)conjugated oligodeoxyribonucleotide sequence complementary to vesicular stomatitis virus N protein mRNA initiation site. Proc Natl Acad Sci U S A 84:648–652Google Scholar
  112. Liebsch G, Landgraf R, Gerstberger R, Probst JC, Wotjak CT, Engelmann M, Holsboer F, Montkowski A (1995) Chronic infusion of a CRH1 receptor antisense oligodeoxynucleotide into the central nucleus of the amygdala anxiety-related behavior in socially defeated rats. Regul Pept 59(2):229–239PubMedCrossRefGoogle Scholar
  113. Lima WF, Crooke ST (1997) Binding affinity and specificity of Escherichia coli RNase H1: impact on the kinetics of catalysis of antisense oligonucleotide-RNA hybrids. Biochemistry 36(2):390–398PubMedCrossRefGoogle Scholar
  114. Lima WF, Monia BP, Ecker DJ, Freier SM (1992) Implication of RNA structure on antisense oligonucleotide hybridization kinetics. Biochemistry 31:12055–12061PubMedCrossRefGoogle Scholar
  115. Lima WF, Venkatraman M, Crooke ST (in press) The influence of antisense oligo-nucleotide-induced RNA structure on E. coli RNase H1 activity. J Biol ChemGoogle Scholar
  116. Lin KY, Jones RJ, Matteucci M (1995) Tricyclic-2’-deoxycytidine analogs: synthesis and incorporation into oligodeoxynucleotides which have enhanced binding to complementary RNA. J Am Chem Soc 117:3873–3874CrossRefGoogle Scholar
  117. Lin PKT, Brown DM (1989) Synthesis and duplex stability of oligonucleotides containing cytosine-thymine analogues. Nucleic Acids Res 17:10373–10383PubMedCrossRefGoogle Scholar
  118. Loke SL, Stein CA, Zhang XH, Mori K, Nakanishi M, Subasinghe C, Cohen JS, Neckers LM (1989) Characterization of oligonucleotide transport into living cells. Proc Natl Acad Sci U S A 86:3474–3478PubMedCrossRefGoogle Scholar
  119. Maher LJ III, Wold B, Dervan PB (1989) Inhibition of DNA binding proteins by oligonucleotide-directed triple helix formation. Science 245:725–730PubMedCrossRefGoogle Scholar
  120. Maier JAM, Voulalas P, Roeder D, Maciag T (1990) Extension of the life-span of human endothelial cells by an interleukin-1 a antisense oligomer. Science 249: 1570–1574PubMedCrossRefGoogle Scholar
  121. Majumdar C, Stein CA, Cohen JS, Broder S, Wilson SH (1989) Stepwise mechanism of HIV reverse transcriptase: primer function of phosphorothioate oligodeoxynucleotide. Biochemistry 28:1340–1346PubMedCrossRefGoogle Scholar
  122. Mani SK, Blaustein JD, Allen JMC, Law SW, O’Malley BW, Clark JH (1994) Inhibition of rat sexual behavior by antisense oligonucleotides to the progesterone receptor. Endocrinology 135:1409–1414PubMedCrossRefGoogle Scholar
  123. Manoharan M (1993) Designer antisense oligonucleotides: conjugation chemistry and functionality placement. In: Crooke ST, Lebleu B (eds) Antisense research and applications. CRC Press, Boca Raton, pp 303–349Google Scholar
  124. Martin FH, Castro MM, Aboul-ela F, Tinoco IJ (1985) Base pairing involving deoxyinosine: implications for probe. Nucleic Acids Res 13:8927–8938PubMedCrossRefGoogle Scholar
  125. Martin P (1995) Ein neuer Zugang zu 2’-O-Alkylribonucleosiden und Eigenschaften deren Oligonucleotide. Hely Chim Acta 78:486–489CrossRefGoogle Scholar
  126. McCarthy MM, Masters DB, Rimvall K, Schwartz-Giblin S, Pfaff DW (1994) Intracerebral administration of antisense oligodeoxynucleotides to GAD65 and GAD67 mRNAs modulate reproductive behavior in the female rat. Brain Res 636:209–220PubMedCrossRefGoogle Scholar
  127. McCarthy MM, Nielsen DA, Goldman D (1995) Antisense oligonucleotide inhibition of tryptophan hydroxylase activity in mouse brain. Regul Pept 59(2):163–170PubMedCrossRefGoogle Scholar
  128. McManaway ME, Neekers LM, Loke SL, Al-Nasser AA, Redner RL, Shiramizu BT, Goldschmidts WL, Huber BE, Bhatia K, Magrath IT (1990) Tumour-specific inhibition of lymphoma growth by an antisense oligodeoxynucleotide. Lancet 335:808–811PubMedCrossRefGoogle Scholar
  129. Messina JP, Gilkeson GS, Pisetsky DS (1991) Stimulation of in vitro murine lymphocyte proliferation by bacterial DNA. J Immunol 147 (6):1759–1764PubMedGoogle Scholar
  130. Miller PS (1989) Non-ionic antisense oligonucleotides. In: Cohen JS (ed) Oligodeoxynucleotides: antisense inhibitors of gene expression. CRC Press, Boca Raton, p 79Google Scholar
  131. Minshull J, Hunt T (1986) The use of single-stranded DNA and RNase H to promote quantitative “hybrid arrest of translation” of mRNA/DNA hybrids in reticulocyte lysate cell-free translations. Nucleic Acids Res 14:6433–6451PubMedCrossRefGoogle Scholar
  132. Mirabelli CK, Crooke ST (1993) Antisense oligonucleotides in the context of modern molecular drug discovery and development. In: Crooke ST, Lebleu B (eds) Antisense research and applications. CRC Press, Boca Raton, pp 7–35Google Scholar
  133. Mirabelli CK, Bennett CF, Anderson K, Crooke ST (1991) In vitro and in vivo pharmacologic activities of antisense oligonucleotides. Anticancer Drug Des 6:647–661PubMedGoogle Scholar
  134. Miyao T, Takakura Y, Akiyama T, Yoneda F, Sezaki H, Hashida M (1995) Stability and pharmacokinetic characteristics of oligonucleotides modified at terminal linkages in mice. Antisense Res Dev 5(2):115–121PubMedGoogle Scholar
  135. Mizoguchi H, Narita M, Nagase H, Tseng LF (1995) Antisense oligodeoxynucleotide to a delta-opioid receptor blocks the antinociception induced by cold water swimming. Regul Pept 59(2):255–259PubMedCrossRefGoogle Scholar
  136. Monia B, Johnston JF, Sasmor H, Cummins LL (1996) Nuclease resistance and antisense activity of modified oligonucleotides targeted to Ha-ras. J Biol Chem 24(14):14533–14540Google Scholar
  137. Monia BP, Johnston JF, Ecker DJ, Zounes M, Lima WF, Freier SM (1992) Selective inhibition of mutant Ha-ras mRNA expression by antisense oligonucleotides. J Biol Chem 267:19954–19962PubMedGoogle Scholar
  138. Monia BP, Lesnik EA, Gonzalez C, Lima WF, McGee D, Guinosso CJ, Kawasaki AM, Cook PD, Freier SM (1993) Evaluation of 2’-modified oligonucleotides containing deoxy gaps as antisense inhibitors of gene expression. J Biol Chem 268:14514–14522PubMedGoogle Scholar
  139. Monia BP, Johnston JF, Geiger T, Muller M, Fabbro D (1995) Antitumor activity of a phosphorothioate oligodeoxynucleotide targeted against C-raf kinase. Nature Med 2(6):668–675Google Scholar
  140. Morishita R, Gibbons GH, Ellison KE, Nakajima M, Zhang L, Kaneda Y, Ogihara T, Dzau VJ (1993) Single intraluminal delivery of antisense CDC 2 kinase and proliferating-cell nuclear antigen oligonucleotides results in chronic inhibition of neointimal hyperplasia. Proc Natl Acad Sci U S A 90:8474–8478PubMedCrossRefGoogle Scholar
  141. Morishita R, Gibbons GH, Kaneda Y, Ogihara T, Dzau VJ (1994) Pharmacokinetics of antisense oligodeoxyribonucleotides (cyclin B1 and CDC 2 kinase) in the vessel wall in vivo: enhanced therapeutic utility for restenosis by HVJ-liposome delivery. Gene 149:13–19PubMedCrossRefGoogle Scholar
  142. Morris M, Li P, Barrett C, Callahan MF (1995) Oxytocin antisense reduces salt intake in the baroreceptor-denervated rat. Regul Pept 59(2):261–266PubMedCrossRefGoogle Scholar
  143. Morvan F, Rayner B, Imbach JL (1991) Alpha-oligonucleotides: a unique class of modified chimeric nucleic acids. Anticancer Drug Des 6(6):521–529PubMedGoogle Scholar
  144. Nagel KM, Holstad SG, Isenberg KE (1993) Oligonucleotide pharmacotherapy: an antigene strategy. Pharmacotherapy 13(3):177–188PubMedGoogle Scholar
  145. Neckers LM (1993) Cellular internalization of oligodeoxynucleotides. In: Crooke ST, Lebleu B (eds) Antisense research and applications. CRC Press, Boca Raton, pp 451–460Google Scholar
  146. Nesterova M, Cho-Chung YS (1995) A single-injection protein kinase A-directed antisense treatment to inhibit tumor growth. Nature Med 1:528–533PubMedCrossRefGoogle Scholar
  147. Neumann I, Porter DWF, Landgraf R, Pittman QJ (1994) Rapid effect on suckling of an oxytocin antisense oligonucleotide administered into rat supraoptic nucleus. Am J Physiol Regul Integr Comp Physiol 267:R852–R858Google Scholar
  148. Nikiforov TT, Connolly BA (1991) The synthesis of oligodeoxynucleotides containing 4-thiothymidine residues. Tetrahedron Lett 32(31):3851–3854CrossRefGoogle Scholar
  149. Nyce JW, Metzger WJ (1997) DNA antisense therapy for asthma in an animal model. Nature 385(6618):721–725PubMedCrossRefGoogle Scholar
  150. Offensperger WB, Offensperger S, Walter E, Teubner K, Igloi G, Blum HE, Gerok W (1993) In vivo inhibition of duck hepatitis B virus replication and gene expression by phosphorothioate modified antisense oligodeoxynucleotides. EMBO J 12: 1257–1262PubMedGoogle Scholar
  151. Ogo H, Hirai Y, Miki S, Nishio H, Akiyama M, Nakata Y (1994) Modulation of substance P/neurokinin-1 receptor in human astrocytoma cells by antisense oligodeoxynucleotides. Gen Pharmacol 25:1131–1135PubMedCrossRefGoogle Scholar
  152. Osen-Sand A, Catsicas M, Staple JK, Jones KA, Ayala G, Knowles J, Grenningloh G, Catsicas S (1993) Inhibition of axonal growth by SNAP-25 antisense oligonucleotides in vitro and in vivo. Nature 364:445–448PubMedCrossRefGoogle Scholar
  153. Parmentier G, Schmitt G, Dolle F, Luu B (1994) A convergent synthesis of 2’-O-methyl uridine. Tetrahedron 50(18):5361–5368CrossRefGoogle Scholar
  154. Perlaky L, Saijo Y, Busch RK, Bennett CF, Mirabelli CK, Crooke ST, Busch H (1993) Growth inhibition of human tumor cell lines by antisense oligonucleotides designed to inhibit p120 expression. Anticancer Drug Des 8:3–14PubMedGoogle Scholar
  155. Phillips MI, Wielbo D, Gyurko R (1994) Antisense inhibition of hypertension: a new strategy for renin-angiotensin candidate genes. Kidney Int 46:1554–1556PubMedCrossRefGoogle Scholar
  156. Pisetsky DS, Reich CF (1994) Stimulation of murine lymphocyte proliferation by a phosphorothioate oligonucleotide with antisense activity for herpes simplex virus. Life Sci 54:101–107PubMedCrossRefGoogle Scholar
  157. Pitsch S, Krishnamurthy R, Bolli M, Wendeborn S, Holzner A, Minton M, Lesueur C, Schloenvogt I, Jaun B et al (1995) Pyranosyl-RNA (“p-RNA”): base-pairing selectivity and potential to replicate. Heiv Chim Acta 78(7):1621–1635CrossRefGoogle Scholar
  158. Pollio G, Xue P, Zanisi M, Nicolin A, Maggi A (1993) Antisense oligonucleotide blocks progesterone-induced lordosis behavior in ovariectomized rats. Mol Brain Res 19:135–139PubMedCrossRefGoogle Scholar
  159. Qin ZH, Zhou LW, Zhang SP, Wang Y, Weiss B (1995) D2 dopamine receptor antisense oligodeoxynucleotide inhibits the synthesis of a functional pool of D2 dopamine receptors. Mol Pharmacol 48(4):730–737PubMedGoogle Scholar
  160. Quartin RS, Brakel CL, Wetmur JG (1989) Number and distribution of methylphosphonate linkages in oligodeoxynucleotides affect exo-and endonuclease sensitivity and ability to form RNase H substrates. Nucleic Acids Res 17:7253–7262PubMedCrossRefGoogle Scholar
  161. Quattrone A, Papucci L, Schiavone N, Mini E, Capaccioli S (1994) Intracellular enhancement of intact antisense oligonucleotide steady-state levels by cationic lipids. Anticancer Drug Des 9:549–553PubMedGoogle Scholar
  162. Rappaport J, Hanss B, Kopp JB, Copeland TD, Bruggeman LA, Coffman TM, Klotman PE (1995) Transport of phosphorothioate oligonucleotides in kidney: implications for molecular therapy. Kidney Int 47:1462–1469PubMedCrossRefGoogle Scholar
  163. Ratajczak MZ, Kant JA, Luger SM, Huiya N, Zhang J, Zon G, Gewirtz AM (1992) In vivo treatment of human leukemia in a seid mouse model with c-myb antisense oligodeoxynucleotides. Proc Natl Acad Sci U S A 89:11823–11827PubMedCrossRefGoogle Scholar
  164. Rosolen A, Whitesell L, Ikegaki N, Kennett RH, Neckers LM (1990) Antisense inhibition of single copy N-myc expression results in decreased cell growth without reduction of c-myc protein in a neuroepithelioma cell line. Cancer Res 50(19): 6316–6322PubMedGoogle Scholar
  165. Sakai RR, Ma LY, He PF, Fluharty SJ (1995) Intracerebroventricular administration of angiotensin type 1 (AT1) receptor antisense oligonucleotides attenuate thirst in the rat. Regul Pept 59(2):183–192PubMedCrossRefGoogle Scholar
  166. Sands H, Gorey-Feret LJ, Cocuzza AJ, Hobbs FW, Chidester D, Trainor GL (1994) Biodistribution and metabolism of internally 3H-labeled oligonucleotides. I. Comparison of a phosphodiester and a phosphorothioate. Mol Pharmacol 45:932–943PubMedGoogle Scholar
  167. Sands H, Gorey-Feret LJ, Ho SP, Bao Y, Cocuzza AJ, Chidester D, Hobbs FW (1995) Biodistribution and metabolism of internally 3H-labeled oligonucleotides. II. 3’,5-blocked oligonucleotides. Mol Pharmacol 47:636–646PubMedGoogle Scholar
  168. Sanghvi YS (1993) Heterocyclic base modifications in nucleic acids and their applications in antisense oligonucleotides. In: Crooke ST, Lebleu B (eds) Antisense research and applications. CRC Press, Boca Raton, pp 273–288Google Scholar
  169. Sanghvi YS, Cook PD (1994) Carbohydrate modifications in antisense research. American Chemical Society, Washington DC (ACS Symposium Series no 580)CrossRefGoogle Scholar
  170. Sanghvi YS, Hoke GD, Freier SM, Zounes MC, Gonzalez C, Cummins L, Sasmor H. Cook PD (1993) Antisense oligodeoxynucleotides: synthesis, biophysical and biological evaluation of oligodeoxynucleotides containing modified pyrimidines. Nucleic Acids Res 21:3197–3203PubMedCrossRefGoogle Scholar
  171. SantaLucia J Jr, Kierzek R, Turner DH (1991) Functional group substitutions as probes of hydrogen bonding between GA mismatches in RNA internal loops. J Am Chem Soc 113:4313–4322CrossRefGoogle Scholar
  172. Saxena SK, Ackerman EJ (1990) Microinjected oligonucleotides complementary to the a-sarcin loop of 28 S RNA abolish protein synthesis in Xenopus oocytes. J Biol Chem 265:3263–3269PubMedGoogle Scholar
  173. Sburlati AR, Manrow RE, Berger SL (1991) Prothymosin alpha antisense oligomers inhibit myeloma cell division. Proc Natl Acad Sci U S A 88:253–257PubMedCrossRefGoogle Scholar
  174. Schwab G, Chavany C, Duroux I, Goubin G, Lebeau J, Helene C, Saison-Behmoaras T (1994) Antisense oligonucleotides adsorbed to polyalkylcyanoacrylate nanoparticles specifically inhibit mutated Ha-ras-mediated cell proliferation and tumorigenicity in nude mice. Proc Natl Acad Sci U S A 91:10460–10464PubMedCrossRefGoogle Scholar
  175. Seela F, Kaiser K, Bindig U (1989) 2’-Deoxy-beta-D-ribofuranosides of N6-methylated 7-deazaadenine and 8-aza-7-deazaadenine: solid-phase synthesis of oligodeoxyribonucleotides and properties of self-complementary duplexes. Helv Chim Acta 72(5):868–881CrossRefGoogle Scholar
  176. Seda F, Ramzaeva N, Chen Y (1995) Oligonucleotide duplex stability controlled by the 7-substituents of 7-deazaguanine bases. Bioorg Med Chem Lett 5(24):3049–3052CrossRefGoogle Scholar
  177. Simons M, Edelman ER, DeKeyser JL, Langer R, Rosenberg RD (1992) Antisense cmyb oligonucleotides inhibit arterial smooth muscle cell accumulation in vivo. Nature 359:67–70PubMedCrossRefGoogle Scholar
  178. Simons M, Edelman ER, Rosenberg RD (1994) Antisense proliferating cell nuclear antigen oligonucleotides inhibit intimal hyperplasia in a rat carotid artery injury model. J Clin Invest 93:2351–2356PubMedCrossRefGoogle Scholar
  179. Skorski T, Nieborowska-Skorska M, Nicolaides NC, Szczylik C, Iversen P, lozzo RV, Zon G, Calabretta B (1994) Suppression of Philadelphia leukemia cell growth in mice by BCR-ABL antisense oligodeoxynucleotide. Proc Natl Acad Sci U S A 91:4504–4508PubMedCrossRefGoogle Scholar
  180. Skutella T, Probst JC, Jirikowski GF, Holsboer F, Spanagel R (1994) Ventral tegmental area (VTA) injections of tyrosine hydroxylase phosphorothioate antisense oligonucleotide suppress operant behavior in rats. Neurosci Lett 167:55–58PubMedCrossRefGoogle Scholar
  181. Smith CC, Aurelian L, Reddy MP, Miller PS, Ts’o POP (1986) Antiviral effect of an oligo(nucleoside methylphosphonate) complementary to the splice junction of herpes simplex virus type 1 immediate early pre-mRNAs 4 and 5. Proc Natl Acad Sci U S A 83:2787–2791PubMedCrossRefGoogle Scholar
  182. Sproat BS, Lamond AI (1993) 2’-O-alkyloligoribonucleotides. In: Crooke ST, Lebleu B (eds) Antisense research and applications. CRC Press, Boca Raton, pp 351–362Google Scholar
  183. Sproat BS, Lamond AI, Beijer B, Neuner P, Ryder U (1989) Highly efficient chemical synthesis of 2’-O-methyloligoribonucleotides and tetrabiotinylated derivatives; novel probes that are resistant to degradation by RNA or DNA specific nucleases. Nucleic Acids Res 17:3373–3386PubMedCrossRefGoogle Scholar
  184. Sproat BS, Iribarren AM, Garcia RG, Beijer B (1991) New synthetic routes to synthons suitable for 2’-0-allyloligoribonucleotide assembly. Nucleic Acids Res 19(4):733–738PubMedCrossRefGoogle Scholar
  185. Srinivasan SK, Tewary HK, Iversen PL (1995) Characterization of binding sites, extent of binding, and drug interactions of oligonucleotides with albumin. Antisense Res Dev 5(2):131–139PubMedGoogle Scholar
  186. Stein CA, Cheng YC (1993) Antisense oligonucleotides as therapeutic agents — is the bullet really magical? Science 261:1004–1012PubMedCrossRefGoogle Scholar
  187. Stein CA, Neckers M, Nair BC, Mumbauer S, Hoke G, Pal R (1991) Phosphorothioate oligodeoxycytidine interferes with binding of HIV-1 gp120 to CD4. J Acquir Immune Defic Syndr 4:686–693PubMedGoogle Scholar
  188. Stepkowski SM, Tu Y, Condon TP, Bennett CF (1994) Blocking of heart allograft rejection by intercellular adhesion molecule-1 antisense oligonucleotides alone or in combination with other immunosuppressive modalities. J Immunol 153:5336–5346PubMedGoogle Scholar
  189. Stepkowski SM, Tu Y, Condon TP, Bennett CF (1995) Induction of transplantation tolerance by treatment with ICAM-1 antisense oligonucleotides and anti-LFA-1 monoclonal antibodies. Transplant Proc 27:113PubMedGoogle Scholar
  190. Suzuki S, Pilowsky P, Minson J, Arnolda L, Llewellyn-Smith IJ, Chalmers J (1994) cfos antisense in rostral ventral medulla reduces arterial blood pressure. Am J Physiol 266(4,2):R1418–R1422PubMedGoogle Scholar
  191. Takakura Y, Mahato RI, Yoshida M, Kanamaru T, Hashida M (1996) Uptake characteristics of oligonucleotides in the isolated rat liver perfusion system. Antisense Nucleic Acid Drug Del 6:177–183CrossRefGoogle Scholar
  192. Tao LF, Marx KA, Wongwit W, Jiang Z, Agrawal S, Coleman RM (1995) Uptake, intracellular distribution, and stability of oligodeoxynucleotide phosphorothioate by Schistosoma mansoni. Antisense Res Dev 5(2):123–129PubMedGoogle Scholar
  193. Temsamani J, Tang J, Padmapriya A, Kubert M, Agrawal S (1993) Pharmacokinetics, biodistribution, and stability of capped oligodeoxynucleotide phosphorothioates in mice. Antisense Res Dev 3:277–284PubMedGoogle Scholar
  194. Thuong NT, Asseline U, Monteney-Garestier T (1989) Oligodeoxynucleotides covalently linked to intercalating and reactive substances: synthesis, characterization and physicochemical studies. In: Cohen JS (ed) Oligodeoxynucleotides: antisense inhibitors of gene expression. CRC Press, Boca Raton, p 25Google Scholar
  195. Tischmeyer W, Grimm R, Schicknick H, Brysch W, Schlingensiepen KH (1994) Sequence-specific impairment of learning by c-jun antisense oligonucleotides. Neuroreport 5:1501–1504PubMedCrossRefGoogle Scholar
  196. Vasanthakumar G, Ahmed NK (1989) Modulation of drug resistance in a daunorubicin resistant subline with oligonucleoside methylphosphonates [published erratum appears in Cancer Commun 1990; 2 (8):2951. Cancer Commun 1(4):225–232PubMedGoogle Scholar
  197. Vickers T, Baker BF, Cook PD, Zounes M, Buckheit RW Jr, Germany J, Ecker DJ (1991) Inhibition of HIV-LTR gene expression by oligonucleotides targeted to the TAR element. Nucleic Acids Res 19:3359–3368PubMedCrossRefGoogle Scholar
  198. Vlassov VV (1989) Inhibition of tick-borne viral encephalitis expression using covalently linked oligonucleotide analogs. Conference proceedings ••Google Scholar
  199. Wagner RW, Matteucci MD, Lewis JG, Gutierrez AJ, Moulds C, Froehler BC (1993) Antisense gene inhibition by oligonucleotides containing C-5 propyne pyrimidines. Science 260:1510–1513PubMedCrossRefGoogle Scholar
  200. Wahlestedt C, Pich EM, Koob GF, Yee F, Heilig M (1993) Modulation of anxiety and neuropeptide Y-Y1 receptors by antisense oligodeoxynucleotides. Science 259:528–531PubMedCrossRefGoogle Scholar
  201. Walder RY, Walder JA (1988) Role of RNase H in hybrid-arrested translation by antisense oligonucleotides. Proc Natl Acad Sci U S A 85:5011–5015PubMedCrossRefGoogle Scholar
  202. Walker K, Elela SA, Nazar RN (1990) Inhibition of protein synthesis by anti-5.8 SrRNA oligodeoxyribonucleotides. J Biol Chem 265:2428–2430PubMedGoogle Scholar
  203. Wang S, Lee RJ, Cauchon G, Gorenstein DG, Low PS (1995) Delivery of antisense oligodeoxyribonucleotides against the human epidermal growth factor receptor into cultured KB cells with liposomes conjugated to folate via polyethylene glycol. Proc Natl Acad Sci U S A 92:3318–3322PubMedCrossRefGoogle Scholar
  204. Weiss B, Zhou LW, Zhang SP, Qin ZH (1993) Antisense oligodeoxynucleotide inhibits D2 dopamine receptor-mediated behavior and D2 messenger RNA. Neuroscience 55:607–612Google Scholar
  205. Westermann P, Gross B, Hoinkis G (1989) Inhibition of expression of SV40 virus large T-antigen by antisense oligodeoxyribonucleotides. Biomed Biochim Acta 48(1): 85–93PubMedGoogle Scholar
  206. Whitesell L, Rosolen A, Neckers LM (1991) In vivo modulation of N-myc expression by continous perfusion with an antisense oligonucleotide. Antisense Res Dev 1:343–350PubMedGoogle Scholar
  207. Wickstrom E (1986) Oligodeoxynucleotide stability in subcellular extracts and culture media. J Biochem Biophys Methods 13:97–102PubMedCrossRefGoogle Scholar
  208. Woodburn VL, Hunter JC, Durieux C, Poat JA, Hughes J (1994) The effect of C-FOS antisense in the formalin-paw test. Regul Pept 54(1,2):327–328CrossRefGoogle Scholar
  209. Wu H, MacLeod AR, Lima WF, Crooke ST (submitted) Identification and partial purification of human double-stranded RNase activity: a novel terminating mechanism for oligonucleotide antisense drugsGoogle Scholar
  210. Wyatt JR, Vickers TA, Roberson JL, Buckheit RW Jr, Klimkait T, DeBaets E, Davis PW, Rayner B, Imbach JL, Ecker DJ (1994) Combinatorially selected guanosinequartet structure is a potent inhibitor of human immunodeficiency virus envelope-mediated cell fusion. Proc Natl Acad Sci U S A 91:1356–1360PubMedCrossRefGoogle Scholar
  211. Yacyshyn B, Woloschuk B, Yacyshyn MB, Martini D, Tami J, Bennett F, Kisner D, Shanahan W (1997) Efficacy and safety of ISIS 2302 (ICAM-1 antisense oligonucleotide) treatment of steroid-dependent Crohn’s disease. Annual meetings of the American Gastroenterological Association and the American Association for the Study of Liver Diseases, Washington DCGoogle Scholar
  212. Yazaki T, Ahmad S, Chahlavi A, Zylber-Katz E, Dean NM, Rabkin SD, Martuza RL, Glazer RI (1996) Treatment of glioblastoma U-87 by systemic administration of an antisense protein kinase C — a phosphorothioate oligodeoxynucleotide. Mol Pharmacol 50(2):236–242Google Scholar
  213. Zamecnik PC, Stephenson ML (1978) Inhibition of Rous sarcoma virus replication and cell transformation by a specific oligodeoxynucleotide. Proc Natl Acad Sci U S A 75:289–294CrossRefGoogle Scholar
  214. Zamecnik PC, Goodchild J, Taguchi Y, Sarin PS (1986) Inhibition of replication and expression of human T-cell lymphotropic virus type III in cultured cells by exogenous synthetic oligonucleotides complementary to viral RNA. Proc Natl Acad Sci U S A 83:4143–4146PubMedCrossRefGoogle Scholar
  215. Zerial A, Thuong NT, Helene C (1987) Selective inhibition of the cytopathic effect of type A influenza viruses by oligodeoxynucleotides covalently linked to an intercalating agent. Nucleic Acids Res 15(23):9909–9919PubMedCrossRefGoogle Scholar
  216. Zhang M, Creese I (1993) Antisense oligodeoxynucleotide reduces brain dopamine D2 receptors: behavioral correlates. Neurosci Lett 161:223–226PubMedCrossRefGoogle Scholar
  217. Zhang R, Lu Z, Zhang X, Zhao H, Diasio RB, Liu T, Jiang Z, Agrawal S (1995a) In vivo stability and disposition of a self-stabilized oligodeoxynucleotide phosphorothioate in rats. Clin Chem 41(6,1):836–843Google Scholar
  218. Zhang R, Yan J, Shahinian H, Amin G, Lu Z, Liu T, Saag MS, Jiang Z, Temsamani J, Martin RR, Schechter PJ, Agrawal S, Diasio RB (1995b) Pharmacokinetics of an anti-human immunodeficiency virus antisense oligodeoxynucleotide phosphorothioate (GEM 91) in HIV-infected subjects. Clin Pharmacol Ther 58:44–53CrossRefGoogle Scholar
  219. Zhang SP, Zhou LW, Weiss B (1994) Oligodeoxynucleotide antisense to the D, dopamine receptor mRNA inhibits D, dopamine receptor-mediated behaviors in normal mice and in mice lesioned with 6-hydroxydopamine. J Pharmacol Exp Ther 271:1462–1470PubMedGoogle Scholar
  220. Zheng H, Sahai BM, Kilgannon P, Fotedar A, Green DR (1989) Specific inhibition of cell-surface T-cell receptor expression by antisense oligodeoxynucleotides and its effect on the production of an antigen-specific regulatory T-cell factor. Proc Natl Acad Sci U S A 86:3758–3762PubMedCrossRefGoogle Scholar
  221. Zhou LW, Zhang SP, Qin ZH, Weiss B (1994) In vivo administration of an oligodeoxynucleotide antisense to the D2 dopamine receptor messenger RNA inhibits D2 dopamine receptor-mediated behavior and the expression of D2 dopamine receptors in mouse striatum. J Pharmacol Exp Ther 268:1015–1023PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • S. T. Crooke

There are no affiliations available

Personalised recommendations