Skip to main content

Ecological Orientors: Pattern and Process of Succession in Relation to Ecological Orientors

  • Conference paper

Abstract

A theoretical analysis reveals that the concept of “succession” is generally applied both to community and ecosystem phenomena, which must be kept strictly apart. “Succession” is also applied to phenomena which we call “dynamics”, “change” and “development”. Additionally, any satisfactory theory on the temporal behavior of ecological systems must account for both succession and its logical counterpart, constancy. Furthermore, it is shown that the community level is difficult to distinguish from both the population and the ecosystem level. Important community characteristics which enable us to delimit the community from other observation levels can be drawn from the analysis of semiautonomous behavior of hierarchically ordered levels. A list of aspects relating to semi-autonomy distinguishing the community both from the ecosystem and the population is presented. The confusion relating to key concepts of spatial and temporal relations in ecological systems is outlined. Different terminologies are necessary to speak about observational and theoretical entities. “Pattern” and “process” are adequate terms of an observational terminology, while “structure” and “function” are terms of theoretical reasoning. Also, discreteness or continuity of phenomena must be described in different terms. The term “process” accounts for continuous phenomena, while the term “event” is necessary to describe discrete ones.

An analysis of special problems of succession theory shows that descriptive succession theory must take into account three classes of change: changes in species composition, changes in important functional characters, and changes in type. An exhaustive causal repertoire of successional mechanisms is listed. The same mechanisms lead to either change or constancy, or to past, present, and future states of a system. Special emphasis is put on the deduction of zero-force laws. An inquiry of the reduction of community phenomena to population phenomena shows that invasion, maintenance, and extinction require different models of causality. While a causal theory for invasion is elaborated, maintenance and extinction are not yet well understood. Predictive succession theory is also not well developed. In an overview 15 successional theories are listed which claim to explain temporal community phenomena. These approaches use a wide range of mechanisms. Two theories (resource ratio hypothesis, inhibition model) explain different kinds of temporal behavior and are therefore regarded as the most advanced ones. Two examples of succession are presented in order to test the explanatory power of successional theories. In both cases a narrative explanation of succession on the level of species composition is possible a posteriori. The two cases include a great deal of surprise, and both cases do not comprise any indication of maturation, retrogression, or orderly serial development.

An analysis of the relation of successional trends to ecologically based “goal functions” in conservation and planning shows that goals of a democratic society are diverse and pluralistic. This is also the case with respect to goals of nature conservation. By analyzing an empirical sequence of primary succession in the former coal mining area of East Germany we investigate the question whether environmental goals can directly be deduced from successional trends of ecological communities. All the distinguished and described stages have a certain value in the context of conservation. Each stage is characterized by special features of contradicting value concerning erosion potential, nutrient losses, water balance, diversity of different plant and animal groups. Thus no goal functions derived from successional trends can be adopted as goals for nature conservation.

Keywords

  • Goal Function
  • Succession Theory
  • Habitat Factor
  • Coal Mining Area
  • Theoretical Entity

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-58769-6_4
  • Chapter length: 29 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-58769-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)
Hardcover Book
USD   249.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen TFH, Hoekstra TW (1990) The Confusion Between Scale-defined Levels and Conventional Levels of Organisation. J Veget Sci 1:5–13

    CrossRef  Google Scholar 

  • Allen TFH, Hoekstra TW (1991) Role of Heterogeneity in Scaling of Ecological Systems Under Analysis. In: Kolasa J, Pickett STA (eds) Ecological Heterogeneity. Ecol Studies 86, New York, pp 47–68

    CrossRef  Google Scholar 

  • Allen TFH, Hoekstra TW (1992) Toward a Unified Ecology Columbia. Univ Press, Columbia

    Google Scholar 

  • Allen TFH, Starr TB (1982) Hierarchy: Perspectives for Ecological Complexity. University of Chicago Press, Chicago, p 310

    Google Scholar 

  • Allen TFH, O’Neill RV, Hoekstra TW (1984) Interlevel Relations in Ecological Research and Management: Some Working Principles from Hierarchy Theory. USDA, Forest Service, General Technical Report RM-110:11

    Google Scholar 

  • Andrewartha HG, Birch LC (1954) The Distribution and Abundance of Animals. University of Chicago Press, Chicago

    Google Scholar 

  • Bastian O (1996) Ökologische Leitbilder in der räumlichen Planung — Orientierungshilfen beim Schutz der biotischen Diversität. Arch Naturschutz u Landschaftsforschung 34:207–234

    Google Scholar 

  • Beckner M (1974) Reduction, Hierarchies and Organisms. In: Ayala FJ, Dobzhansky T (eds) Studies in the Philosophy of Biology Reduction and Related Problems. Berkeley University Press, Berkeley CA, pp 163–177

    Google Scholar 

  • Begon M, Harper JL, Townsend CR (1990) Ecology: Individuals, Populations and Communities, 2nd edn., Blackwell, Oxford

    Google Scholar 

  • Bröring U, Niedringhaus R (1988) Zur Ökologie aquatischer Heteropteren […] in Kleingewässern der ostfriesischen Insel Norderney. Arch Hydrobiol 111:559–574

    Google Scholar 

  • Bröring, U, Schulz, F, Wiegleb, G (1995) Niederlausitzer Bergbaufolgelandschaft: Erarbeitung von Leitbildern und Handlungskonzepten für die verantwortliche Gestaltung und nachhaltige Entwicklung ihrer naturnahen Bereiche. Z Ökol Natursch 4:176–178

    Google Scholar 

  • Bröring U, Wiegleb G (1990) Wissenschaftlicher Naturschutz oder ökologische Grundlagenforschung. Natur u Landschaft 65:283–292

    Google Scholar 

  • Brown JH (1995) Organisms and Species as Complex Aadaptive Systems: Linking the Biology of Populations with the Physics of Ecosystems. In: Jones, CG, Lawton, JH (eds) Linking Species and Ecosystems, Chapman and Hall, New York, pp 16–24

    CrossRef  Google Scholar 

  • Burrows CJ (1990) Processes of Vegetation Change. Unwin, London

    Google Scholar 

  • Cariani P (1992) Emergence and Artificial Life. In: Langton CG, Taylor C, Farmer JD, Rasmussen S (eds) Artifical Life II, Santa Fe Studies in the Science of Complexity, Proc Vol 10, Redwood City, CA, pp 775–797

    Google Scholar 

  • Cherrett JM (1989) Key Concepts: the Result of a Survey of our Members’ Opinion. In: Cherrett, JM (ed) Ecological Concepts. Blackwell, Oxford, pp 1–16

    Google Scholar 

  • Clements FE (1916) Plant Succession An Analysis of the Development of Vegetation. Carnegie Inst Wash Publ No 242

    CrossRef  Google Scholar 

  • Colwell RK (1984) What’s New? Community Ecology Discovers Biology. In: Price P, Slobodchikoff CN, Gaud WS (eds) A New Ecology Novel Approaches to Interactive Systems. Wiley, New York, pp 387–396

    Google Scholar 

  • Connell JH, Slatyer RO (1977) Mechanisms of Succession in Natural Communities and their Role in Community Stabiliy and Organization. Am Nat 111:1119–1144

    CrossRef  Google Scholar 

  • Costanza R, Norton BG, Haskell BD (1992) Ecosystem Health New Goals for Environmental Management. Island Press, Washington DC

    Google Scholar 

  • Cousins SH (1990) Countable ecosystems deriving from a new food web entity. Oikos 57:270–275

    CrossRef  Google Scholar 

  • Drury WH, Nisbet IC (1973) Succcession. J Arnold Arboretum 54: 331–368

    Google Scholar 

  • Egerton FN (1968) Studies of animal populations from lamarck to darwin. Journal Hist Biol 1:225–259

    CrossRef  Google Scholar 

  • Egerton FN (1979) Changing concepts of the balance of nature. Quart Rev Biol 48:322–350

    Google Scholar 

  • Egler FE (1954) Vegetation Science Concepts: I Initial Floristic Composition — a Fctor in Old-field Vegetation Development. Vegetatio 4:412–417

    CrossRef  Google Scholar 

  • Elton C (1927) Animal Ecology. London

    Google Scholar 

  • Emmeche C, Köpp S, Stjernfelt F (1994) Emergence and the Ontology of Levels: Search of the Unexplainable. Arbejdspapier 11 Afdeling for literaturvidenskab. Dept of Comparative Literature, University of Copenhagen

    Google Scholar 

  • Faber M, Manstetten R, Proops J (1992) Toward an Open Future: Ignorance, Novelty, and Evolution. In: Costanza R, Norton BB, Haskell BD (eds) Ecosystem Health - New Goals for Environmental Management. Island Press, Washington DC, pp 72–96

    Google Scholar 

  • Feyerabend PK (1981) Erklärung, Reduktion und Empirismus. In: Probleme des Empirismus, Vieweg, Braunschweig, pp 73–125

    Google Scholar 

  • Forman RTT, Godron M (1986) Landscape Ecology. John Wiley & Sons, New York

    Google Scholar 

  • Gleason HA (1926) The individualistic concept of the plant association. Bull Torrey Bot Club 44:463–481

    CrossRef  Google Scholar 

  • Gnauck A (1995) Einführung: Systemtheorie, Ökosystemvergleiche und Umweltinformatik. In: Gnauck A, Frischmuth A, Kraft A (eds) Ökosysteme: Modellierung und Simulation. Blottner, Taunusstein, pp 11–27

    Google Scholar 

  • Golley FB (1993) The history of the ecosystem concept in ecology. Yale Uni Press, New Haven Greig-Smith P (1979) Pattern in Vegetation. J Evcol 67: 755–779

    Google Scholar 

  • Hagen J (1992) An Entangled Bank The Origins of Ecosystems. Ecology Rutgers University Press, New Brunswick

    Google Scholar 

  • Harper JL (1967) A Darwinian Approach to Plant Ecology. J Ecol 55:247–270

    CrossRef  Google Scholar 

  • Harper JL (1975) Population Ecology of Plants. Academic Press, New York

    Google Scholar 

  • Harper JL (1982) After Description. In: Newman EI (ed) The Plant Community as a Working Mechanism. Blackwell, Oxford, pp 11–25

    Google Scholar 

  • Herr W, Todeskino D, Wiegleb G (1989a) Übersicht über Flora und Vegetation der niedersächsischen Fließgewässer unter besonderer Berücksichtigung von Naturschutz und Landschaftspflege. Naturschutz u Landschaftspflege in Niedersachsen 18:145–284

    Google Scholar 

  • Herr W, Wiegleb G, Todeskino D (1989b) Veränderungen von Flora und Vegetation in ausgewählten Fließgewässern Niedersachsens nach 40 Jahren (1946/86). Naturschutz u Landschaftspflege in Niedersachsen 18:121–144

    Google Scholar 

  • Jax K, Zauke GP (1991) Maßstäbe in der Ökologie — ein vernachlässigter Konzeptbereich. Verh Ges Ökol 21:23–30

    Google Scholar 

  • Jax K (1994) Mosaik-Zyklus und Patch-dynamics: Synonyme oder verschiedene Konzepte? Eine Einladung zur Diskussion. Z Ökol Naturschutz 3:107–112

    Google Scholar 

  • Jax K (1996) The Units of Ecology. Towards an Intersubjective Defintion of Concepts, in Press

    Google Scholar 

  • Jax K, Potthast T, Wiegleb G (1996) Skalierung und Prognoseunsicherheit bei ökologischen Systemen. Verh Ges Ökol 26:527–535

    Google Scholar 

  • Jax K, Jones, CG, Pickett, STA (1997) The Self-identity of Ecological Units, in press

    Google Scholar 

  • Johnstone IM (1986) Plant invasion windows: a time-based classification of invasion potential. Biol Rev 61:369–394

    CrossRef  Google Scholar 

  • Jones CG, Lawton JH (eds) (1995) Linking Species and Ecosystems. Chapman, Hall, New York

    Google Scholar 

  • Jörgensen SE (1992) Integration of Ecosystem Theories: A Pattern. Kluwer, Dordrecht: 376 pp

    CrossRef  Google Scholar 

  • Kolasa J, Pickett STA (1989) Ecological Systems and the Concept of Biological Organisation.Proc Natl Acad Sci 86:8837–8841

    PubMed  CAS  CrossRef  Google Scholar 

  • Krebs A (1996) “Ich würde gerne aus dem Hause tretend ein paar Bäume sehen” Philosophische Überlegungen zum Eigenwert der Natur In: Nutzinger HG (ed) Naturschutz-Ethik-Ökonomie: Theoretische Grundlagen und praktische Konsequenzen. Metropolis, Marburg, pp 31–48

    Google Scholar 

  • Kuhn TS (1976) Die Struktur wissenschaftlicher Revolutionen, 2nd ed. Suhrkamp, Frankfurt/Main

    Google Scholar 

  • Lakatos I (1978) Die Geschichte der Wissenschaft und ihre rationale Rekonstruktion. In: Diederich W (ed) Theorien der Wissenschaftsgeschichte. Suhrkamp, Frankfurt/M, pp 55–119

    Google Scholar 

  • Leps J (1990) Can underlying mechanisms be deduced from observed pattern. In: Krahulec F, Agnew ADQ, Willems JH (eds) Spatial processes in plant communities. Academia, Prague, pp 1–11

    Google Scholar 

  • Leser H (1984) Zum Ökologie-, Ökosystem-und Ökotopbegriff. Natur u Landsch 59:351–357

    Google Scholar 

  • Lindeman RL (1942) The trophic-dynamic aspect of ecology. Ecology 23:399–418

    CrossRef  Google Scholar 

  • Logofet DO (1996) Inhomogeneous Markov Chain Models of Plant Succession: New Perspec-tives of an Old Paradigm. Ecological Summit 96, Abstract 163, University of Copenhagen

    Google Scholar 

  • MacArthur RH (1972) Geographical Ecology. Harper and Row, New York

    Google Scholar 

  • McIntosh RP (1976) Ecology since 1900. In: Taylor BJ, White TJ (eds) Issues and Ideas in America. Norman, Oklahoma, pp 353–372

    Google Scholar 

  • McIntosh RP (1981) Succession and Ecological Theory. In West DC, Shugart HH, Botkin DB (eds) Forest Succession, Concepts and Application. Springer, New York, pp 10–23

    Google Scholar 

  • McIntosh RP (1985) The Background of Ecology: Concept and Theory. Cambridge University Press, Cambridge

    CrossRef  Google Scholar 

  • Mittelstraß J (1992) Rationalität und Reproduzierbarkeit. In: Janich P (ed) Entwicklungen der methodischen Philosophie. Frankfurt, pp 54–67

    Google Scholar 

  • Müller F (1992) Hierarchical Approaches to Ecosystem Theory. Ecolog Modelling 63:215–242

    CrossRef  Google Scholar 

  • Niedringhaus R, Bröring U (1988) Die Wanzen und Käfer süßer und brackiger Gewässer der jungen Dünninseln Memmert und Mellum (Heteroptera, Coleoptera). Drosera 88:329–340

    Google Scholar 

  • Noble IR, Slatyer RO (1980) The Use of Vital Attributes to Predict Successional Changes in Plant Communities Subject to Recurrent Disturbances. Vegetatio 43:5–21

    CrossRef  Google Scholar 

  • Oberdorfer E (1990) Exkursionsflora von Süddeutschland. 5. Aufl., Ulmer, Stuttgart

    Google Scholar 

  • Odum EP (1959) Fundamentals of Ecology, 2nd edn., Saunders, Philadelphia

    Google Scholar 

  • Odum EP (1971) Fundamentals of Ecology, 3rd edn., Saunders, Philadelphia

    Google Scholar 

  • Odum HT (1983) Systems Ecology. An Introduction. Wiley, New York

    Google Scholar 

  • O’Neill RV (1989) Perspectives in Hierarchy and Scale. In: Roughgarden J, May RM, Levin SA (eds) Perspectives in Ecological Theory. Princeton Univ Press, Princeton NJ, pp 140–156

    Google Scholar 

  • O’Neill R, DeAngelis DL, Waide JB, Allen TFH (1986) A Hierarchical Concept of Ecosystems. Princeton University Press, Princeton

    Google Scholar 

  • Patten BC (1982) Environs: Relativistic Elementary Particles for Ecology. Am Nat 119:179–219

    CrossRef  Google Scholar 

  • Patten BC (1990) Environ Theory and Indirect Effects: A reply to Loehle. Ecology 71:2386–2393

    CrossRef  Google Scholar 

  • Peet RK, Christensen NL (1980) Succession: a Population Process. Vegetatio 43:131–140

    CrossRef  Google Scholar 

  • Pianka ER (1992) Evolutionary Ecology, 5th edn. Harper Collins, New York

    Google Scholar 

  • Pickett STA, Collins SL, Armesto JJ (1987) A Hierarchical Consideration of Causes and Mechanisms of Succession. Vegetatio, 69:109–114

    CrossRef  Google Scholar 

  • Pickett STA, McDonnell MJ (1989) Changing Perspectives in Community Dynamics: a Theory of Successional Forces. TREE 4:241–245

    PubMed  CAS  Google Scholar 

  • Potthast T (1996) Transgenetic Organisms and Evolution: Ethical Implications. In: Tomiuk J, Wöhrmann K, Sentker A (eds) Transgenic Organisms — Biological and Social Implications. Birkhäuser, Basel, pp 227–240

    Google Scholar 

  • Reise K (1980) Hundert Jahre Biozönose: Die Evolution eines ökologischen Begriffes. Naturwiss Rundschau 33:328–335

    Google Scholar 

  • Roweck H (1995) Landschaftsentwicklung über Leitbilder? Kritische Gedanken zur Suche nach Leitbildern für die Kulturlandschaft von morgen. LÖBF-Mitteilungen 4:25–34

    Google Scholar 

  • Russel B (1918) The Philosophy of Logical Atomism. The Monist 28 (1919). dtv wissenschaft 4327, dtv, München

    Google Scholar 

  • Salthe SN (1985) Evolving Hierarchical Systems. Columbia University Press, New York

    Google Scholar 

  • Sattler R (1986) Biophilosophy: Analytic and Holistic Perspectives. Springer, Berlin

    Google Scholar 

  • Schmied-Kowarzik W (1989) Friedrich Wilhelm Joseph Schelling. In: Böhme G (ed) Klassiker der Naturphilosophie: Von den Vorsokratikern bis zur Kopenhagener Schule. Beck-Verlag, München, pp 158–262

    Google Scholar 

  • Shrader-Frechette KS (1994) Ecosystem Health: a New Paradigm for Ecological Assessment. TREE 9:456–457

    Google Scholar 

  • Shrader-Frechette KS, McCoy ED (1993) Method in Ecology. Cambridge University Press, Cambridge

    CrossRef  Google Scholar 

  • Sonnenschein M, Gronewold A (1995) Diskrete Petrinetze für individuenbasierte Modelle. In: Gnauck A, Frischmuth A, Kraft A (eds) Ökosysteme: Modellierung und SimulationBlottner, Taunusstein, pp 109–130

    Google Scholar 

  • Soulé ME ed (1987) Minimum Viable Populations for Conservation. Cambridge University Press, Cambridge

    Google Scholar 

  • Toulmin S (1983) Kritik der kollektiven Vernunft (Human understanding, vol 1). Suhrkamp, Frankfurt

    Google Scholar 

  • Trepl L (1988) Gibt es Ökosysteme? Landschaft + Stadt 20:176–185

    Google Scholar 

  • Trepl L (1994) Competition and Coexistence: on the Historical Background in Ecology and the Influence of Economy and Social Sciences. Ecol Modelling, 75/76:99–110

    CrossRef  Google Scholar 

  • Ulanowicz RE (1979) Prediction, Chaos, and Ecological Perspective. In: Halfon E (ed) Theoretical Systems Ecology. Academic Press, New York, pp 107–117

    Google Scholar 

  • Ulanowicz RE (1990) Aristotelian Causalities in Ecosystem Development. Oikos 57:42–48

    CrossRef  Google Scholar 

  • Unwin N (1996) The Individuation of Events. Mind 105:315–330

    CrossRef  Google Scholar 

  • Urban DL, O’Neill RV, Shugart HH (1987) Landscape Ecology: A Hierarchical Perspective Can Help Scientists Understand Spatial Pattern. Bio Science 37:119–127

    Google Scholar 

  • Van der Maarel E (1988) Vegetation Dynamics: Patterns in Space and Time. Vegetatio 77:7–19

    CrossRef  Google Scholar 

  • Van der Valk A (1981) Succession in Wetlands: a Gleasonian Approach. Ecology 62:688–696

    CrossRef  Google Scholar 

  • Warming EB (1895) Plantesamefund. Grundtraek of den oekologiske Plantegeografi. Kopenha-gen

    Google Scholar 

  • Wiegleb G (1989) Explanation and Prediction in Vegetation Science. Vegetatio 83:17–34

    CrossRef  Google Scholar 

  • Wiegleb G (1991) Explorative Datenanalyse und räumliche Skalierung - eine kritische Evaluation. Verh Ges Ökol 21:327–338

    Google Scholar 

  • Wiegleb G (1994) Einführung in die Thematik des Workshops “Ökologische Leitbilder”. TUC Aktuelle Reihe 6:7–13

    Google Scholar 

  • Wiegleb G (1996a) Konzepte der Hierarchietheorie in der Ökologie. In: Mathes K, Breckling B, Eckschmitt K (eds) Systemtheorie in der Ökologie. ecomed, Marburg, pp 7–24

    Google Scholar 

  • Wiegleb G (1996b) Leitbilder des Naturschutzes in der Bergbaufolgelandschaft. Verh Ges Ökol 25:309–319

    Google Scholar 

  • Wiegleb G (1997) Leitbildmethode und naturschutzfachliche Bewertung. Z Ökol u Natursch 6:43–62

    Google Scholar 

  • Wiegleb G, Bröring U (1991) Wissenschaftlicher Naturschutz — Grenzen und Möglichkeiten. Garten + Landschaft 2/91:18–23

    Google Scholar 

  • Wiegleb G, Bröring U (1996) The Position of Epistemological Emergentism in Ecology. In: Albers B, Dittmann S, Krönicke I, Liebezeit G (eds) The Concept of Ecosystems. Senckenbergiana Maritima 27 (3/6):179–193

    Google Scholar 

  • Wiegleb G, Herr W, Todeskino D (1989) Ten Years of Vegetation Dynamics in Two Rivulets in Lower Saxony (FRG). Vegetatio 82:163–178

    CrossRef  Google Scholar 

  • Wiens JA, (1989) Spatial Scaling in Ecology. Funct Ecol 3:385–397

    CrossRef  Google Scholar 

  • Wiens JA (1995) Landscape Mosaics and Ecological Theory. In Hansson L, Fahrig L, Merriam G (eds) Mosaic Landscapes and Ecological Processes. Chapman and Hall, London, pp 1–26

    CrossRef  Google Scholar 

  • Wilson JB (1991) Does Vegetation Science Exist? J Veget Sci 2:289–290

    CrossRef  Google Scholar 

  • Wilson JB, Agnew ADQ (1992) Positive-feedback Switches in Plant Communities. Adv Ecol Res 23:264–326

    Google Scholar 

  • With KA, King AW (1997) The Use and Misuse of Neutral Landscape Models in Ecology. Oikos 79:219–229

    CrossRef  Google Scholar 

  • Wittgenstein L (1922) Tractatus Logico-Philosophicus. London

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bröring, U., Wiegleb, G. (1998). Ecological Orientors: Pattern and Process of Succession in Relation to Ecological Orientors. In: Müller, F., Leupelt, M. (eds) Eco Targets, Goal Functions, and Orientors. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58769-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58769-6_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63720-9

  • Online ISBN: 978-3-642-58769-6

  • eBook Packages: Springer Book Archive