Global Inexact Newton Multilevel FEM for Nonlinear Elliptic Problems

  • Peter Deuflhard
  • Martin Weiser
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 3)


The paper deals with the multilevel solution of elliptic partial differential equations (PDEs) in a finite element setting: uniform ellipticity of the PDE then goes with strict monotonicity of the derivative of a nonlinear convex functional. A Newton multigrid method is advocated, wherein linear residuals are evaluated within the multigrid method for the computation of the Newton corrections. The globalization is performed by some damping of the ordinary Newton corrections. The convergence results and the algorithm may be regarded as an extension of those for local Newton methods presented recently by the authors. An affine conjugate global convergence theory is given, which covers both the exact Newton method (neglecting the occurrence of approximation errors) and inexact Newton-Galerkin methods addressing the crucial issue of accuracy matching between discretization and iteration errors. The obtained theoretical results are directly applied for the construction of adaptive algorithms. Finally, illustrative numerical experiments with a NEWTON-KASKADE code are documented.


Multigrid Method Newton Iteration Accuracy Match Computational Estimate Nonlinear Elliptic Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. E. Bank, D. J. Rose: Analysis of a multilevel iterative method for nonlinear finite element equations. Math. Comput. 39, pp. 453–465 (1982).MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    R. Beck, B. Erdmann, R. Roitzsch: KASKADE 3.0 An Object-Oriented Adaptive Finite Element Code. Technical Report TR 95-4, Konrad-Zuse-Zentrum für Informationstechnik Berlin (1995).Google Scholar
  3. 3.
    F. A. Bornemann, B. Erdmann, R. Kornhuber: Adaptive Multilevel-Methods in Three Space Dimensions. Int. J. Numer. Methods Eng. 36, pp. 3187–3203 (1993).MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    D. Braess: Finite Elemente. Springer-Verlag: Berlin Heidelberg, 302 pages (1992).zbMATHGoogle Scholar
  5. 5.
    J. H. Bramble, J. E. Pasciak, J. Xu: Parallel Multilevel Preconditioners. Math. Comp. 55, pp. 1–22 (1990).MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    P. Deuflhard: A Stepsize Control for Continuation Methods and its Special Application to Multiple Shooting Techniques. Numer. Math. 33, pp. 115–146 (1979).MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    P. Deuflhard, P. Leinen, H. Yserentant: Concepts of an Adaptive Hierarchical Finite Element Code. IMPACT Comp. Sci.; Eng. 1, pp. 3–35 (1989).zbMATHCrossRefGoogle Scholar
  8. 8.
    P. Deuflhard, F. Potra: Asymptotic Mesh Independence of Newton-Galerkin Methods via a refined Mysovskii Theorem. SIAM J. Numer. Anal. 29, No.5, pp. 1395–1412 (1992).MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    P. Deuflhard, M. Weiser: Local Inexact Newton Multilevel FEM for Nonlinear Elliptic Problems. Konrad-Zuse-Zentrum Berlin, Preprint SC 96–29 (1996).Google Scholar
  10. 10.
    W. Hackbusch: Multigrid methods and applications. Springer-Verlag: Berlin, Heidelberg, New York, Tokyo (1985).Google Scholar
  11. 11.
    W. Hackbusch, A. Reusken: Analysis of a Damped Nonlinear Multilevel Method. Numer. Math. 55, pp. 225–246 (1989).MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    W. Hackbusch, U. Trottenberg (eds.): Multigrid methods. Proceedings, Köln-Porz, 1981. Lect. Notes Math. Vol. 960. Springer-Verlag: Berlin, Heidelberg, New York, Tokyo (1982).Google Scholar
  13. 13.
    B. Heise: Nonlinear Field Calculations with Multigrid-Newton Methods. Impact of Computing in Science and Engineering 5, pp. 75–110 (1993).MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    R. Rannacher: On the Convergence of the Newton-Raphson Method for Strongly Nonlinear Finite Element Equations. In: P. Wriggers, W. Wagner (eds.), Nonlinear Computational Mechanics — State of the Art, Springer (1991).Google Scholar
  15. 15.
    J. Xu: Theory of Multilevel Methods. Report No. AM 48, Department of Mathematics, Pennsylvania State University (1989).Google Scholar
  16. 16.
    E. Zeidler: Nonlinear Functional Analysis and its Applications I-III. Springer-Verlag: Berlin, Heidelberg, New York, Tokyo (1985-1990).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Peter Deuflhard
    • 1
  • Martin Weiser
    • 1
  1. 1.Konrad-Zuse-Zentrum für Informationstechnik BerlinGermany

Personalised recommendations