Advertisement

Piecewise Linear (Pre-)wavelets on Non-uniform Meshes

  • Rob Stevenson
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 3)

Abstract

In this paper, an explicit construction of compactly supported prewavelets on linear finite element spaces is introduced on non-uniform meshes on polyhedron domains and on boundaries of such domains. The obtained basas are stable in the Sobolev spaces Hr for |r| < 3/2. The only condition we need is that of uniform refinements. Compared to existing prewavelets bases on uniform meshes, with our construction the basis transformation from wavelet- to nodal basis (the wavelet transform) can be implemented more efficiently.

Keywords and phrases

Wavelets non-uniform meshes optimal multi-level preconditioners 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [CDF92]
    A. Cohen, I. Daubechies, and J.C. Feauveau. Biorthogonal bases of compactly supported wavelets. Comm. Pur. Appl. Math., 45:485–560, 1992.MathSciNetzbMATHCrossRefGoogle Scholar
  2. [CDP96]
    J.M. Carnicer, W. Dahmen, and J.M. Pena. Local decomposition of refinable spaces and wavelets. Appl. and Comp. Harm. Anal., 3:127–153, 1996.MathSciNetzbMATHCrossRefGoogle Scholar
  3. [CW92]
    C.K. Chui and J.Z. Wang. On compactly supported spline wavelets and a duality principle. Trans. Amer. Math. Soc., 330:903–916, 1992.MathSciNetzbMATHCrossRefGoogle Scholar
  4. [DKS95]
    W. Dahmen, A. Kunoth, and R. Schneider. Operator equations, multiscale concepts and complexity. Technical report, WIAS-Berlin, December 1995.Google Scholar
  5. [DKU96]
    W. Dahmen, A. Kunoth, and K. Urban. Biorthogonal spline-wavelets on the interval — stability and moment conditions. Technical report, RWTH Aachen, August 1996.Google Scholar
  6. [Hac89]
    W. Hackbusch. The frequency decomposition multi-grid method I. Application to anisotropic equations. Numer. Math., 56:229–245, 1989.MathSciNetzbMATHCrossRefGoogle Scholar
  7. [Jun94]
    J. Junkherr. Multigrid methods for weakly singular integral equations of the first kind. Christian-Albrechts-Universität Kiel, Germany, 1994. PhD. thesis (in German).Google Scholar
  8. [KO95]
    U. Kotyczka and P. Oswald. Piecewise linear prewavelets of small support. In C.K. Chui and L.L. Schumaker, editors, Approximation Theory VIII. World Scientific Publishing Co. Inc., 1995.Google Scholar
  9. [LO96a]
    R. Lorentz and P. Oswald. Constructing economical Riesz bases for Sobolev spaces. GMD-bericht 993, GMD, Sankt Augustin, May 1996.Google Scholar
  10. [LO96b]
    R. Lorentz and P. Oswald. Multilevel finite element Riesz bases in Sobolev spaces. In P. Bj∅rstad, M. Espedal, and Keyes D., editors, Proc. 9th. Symp. on Domain Decomposition Methods. John Wiley & Sons Ltd., 1996.Google Scholar
  11. [Osw94]
    P. Oswald. Multilevel finite element approximation: Theory and applications. B.G. Teubner, Stuttgart, 1994.zbMATHCrossRefGoogle Scholar
  12. [Sch95]
    R. Schneider. Multiskalen-und Wavelet-Matrixkompression: Analysisbasierte Methoden zur Lösung großer vollbesetzter Gleigungssysteme. TH Darmstadt, Germany, 1995. Habilitationschrift (in German).Google Scholar
  13. [Ste96a]
    R.P. Stevenson. Experiments in 3D with a three-point hierarchical basis preconditioner. Appl. Numer. Math, 1996. To appear.Google Scholar
  14. [Ste96b]
    R.P. Stevenson. A robust hierarchical basis preconditioner on general meshes. Numer. Math., 1996. To appear.Google Scholar
  15. [Ste96c]
    R.P. Stevenson. Stable three-point wavelet bases on general meshes. Technical Report 9627, University of Nijmegen, October 1996. Submitted to Numer. Math.Google Scholar
  16. [Swe95]
    W. Sweldens. The lifting scheme: A construction of second generation wavelets. Technical Report 1995:6, Industrial Mathematics Initiative, Department of Mathematics, University of South Carolina, 1995.Google Scholar
  17. [VW95]
    P.S. Vassilevski and J. Wang. Stabilizing the hierarchical basis by approximate wavelets, II: Implementation and numerical experiments. CAM report 95-48, Department of Mathematics, UCLA, Los Angeles, 1995. to appear in SIAM J. Sci.; Comput.Google Scholar
  18. [VW96]
    P.S. Vassilevski and J. Wang. Stabilizing the hierarchical basis by approximate wavelets, I: Theory. Num. Lin. Alg. with Appl., 1996. To appear.Google Scholar
  19. [Yse86]
    H. Yserentant. On the multi-level splitting of finite element spaces. Numer. Math., 49:379–412, 1986.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Rob Stevenson
    • 1
  1. 1.Department of MathematicsNijmegen UniversityNijmegenThe Netherlands

Personalised recommendations