Robots for Neurosurgery?

  • L. M. Auer


Previous concerns about the use of robots in surgery do not seem justified according to present experience. Computer technology and methods for image processing are now developing at such a rate that active manipulator arms with robotic function can be considered for neurosurgery of the next generation. The major benefit from this development will be the possibility to operate upon a greater variety of intracranial mass lesions via miniaturized approaches with the consequence of a shorter stay in intensive care and in hospital. Direct and indirect intraoperative 3-D visual control of solid structures will increase safety and reduce complications. The surgeon’s capabilities will shift more and more from direct manual action to intelligent planning and development of minimal-risk strategies. Early validation of low-cost solutions instead of ultra-hightech super-expensive equipment will facilitate wide application and acceptance.


Industrial Robot Surgical Robot Electronic Steering Program Intracranial Mass Lesion Stereotactic Neurosurgery 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Auer LM, Van Velthoven V (1990) Intraoperative ultrasound imaging. Comparison with CT and MRI. Springer, Berlin Heidelberg New YorkGoogle Scholar
  2. 2.
    Auer LM, Holzer P, Ascher PW, Heppner F (1988) Endoscopic neurosurgery. Acta Neurochir (Wien) 90:1–14CrossRefGoogle Scholar
  3. 3.
    Auer LM (1996) ROBOSCOPE• image-guided manipulator-assisted system for minimally invasive endo-neurosurgery (Abstract). Proceedings of the SMIT-ROB meeting, Cernobbio, September 18Google Scholar
  4. 4.
    Bargar WL, Bauer A, DiGioia A, Turner R, Taylor JK, McCarthy J, Mears D (1995) Robodoc clinical results - domestic multi-center trial, European trial. Proceedings of the MRCAS conference Wiley-Liss, New York, pp 308–214Google Scholar
  5. 5.
    Benabid AL, Hoffmann D, Lavallee S, Cinquin P, Demongeot J, Le Bas JF, Danel F (1991) Is there any future for robots in neurosurgery? Advances and technical standards in neurosurgery, Vol 18, Springer, Vienna New York, pp 3–45CrossRefGoogle Scholar
  6. 6.
    Benabid AL, Cinquin P, Lavalle S, Le Bas JF, Demongeot J, De Rougemont J (1987) Computer-driven robot for stereotactic surgery connected to CT scan and magnetic resonance imaging. Technological design and preliminary results Appl Neurophysiol 50:153–154Google Scholar
  7. 7.
    Bucholz RD et al. (1997) In: Troccaz J, Mösges R (eds) Lecture notes in computer science, CVRMed-MRCAS. Springer, Berlin Heidelberg New York, pp 458–455Google Scholar
  8. 8.
    Davies BL, Ng WS, Hibberd RD (1993) Prostatic resection; an example of safe robotic surgers. In: Robotica, vol n. Cambridge University Press, Cambridge, pp 561–566Google Scholar
  9. 9.
    Doll J, Schlegel W, Pstyr O, Sturm V, Maier-Borst W (1987) The use of an industrial robot as stereotactic guidance system, CAR ‘79,374–378Google Scholar
  10. 10.
    Drake JM, Joy M, Goldenberg A, Kreindler D (1991) Computer-and robot-assisted resection of thalamic astrocytomas in children. Neurosurgery 29:1CrossRefGoogle Scholar
  11. 11.
    Finaly P (1993) A fully active system for assisting in neurosurgery. Industrial robot 20 (2): 28–29Google Scholar
  12. 12.
    Glauser D, Flury F, Frankhauser H, Burckhardt CW (1989) Configuration of a robot dedicated to stereotactic surgery. loth meeting of the world society for stereotactic and functional neurosurgery, Maebashi, OctoberGoogle Scholar
  13. 13.
    Goerss SJ, Kelly PJ, Kall BA (1987) Automated stereotactic positioning system. Proceedings of the meeting of the american society of stereotactic and functional neurosurgery, Montreal. Appl Neurophysiol 50: 100–106PubMedGoogle Scholar
  14. 14.
    T, Auer LM, Taylor R (1997) Robot-assisted minimally Invasive Neurosurgical procedures: first experimental experience. In: Troccaz J, Grimson E, Mösges R (eds) Lecture notes in computer science, CVRMed-MRCAS. Springer, Berlin Heidelberg New York, pp 319–322Google Scholar
  15. 15.
    Harris SJ, Mei Q, Arambula-Cosio F, Hibberd RD, Nathan S, Wickham JEA, Davies BL. A robotic procedure for transurethral resection of the prostate. pp 264–271Google Scholar
  16. 16.
    Hill D et al. (1997) In: Troccaz J, Grimson E, Mösges R (eds) Lecture notes in Computer Science, CVRMed-MRCAS. Springer, Berlin Heidelberg New York, pp 449–458Google Scholar
  17. 17.
    Jacobi P, Daniel P, Mugler A, et al. (1990) Diagnosegesteuerte Therapierobotertechnik - medizinische und biomedizinische Aspekte. Z Klin Med 6: 515–519Google Scholar
  18. 18.
    Kanno T, Nonomura K, Katada K (1995) Hyperbaric oxygen therapy and CT-fluoroscopy in the treatment of moderate hypertensive intracerebral hemorrhage. In: Kanno T (ed) Brain ‘85, Neuron, Nagoya, pp 219–225Google Scholar
  19. 20.
    Kavanagh-KT (1994) Applications of image-directed robotics in otolaryngologic surgery. Laryngoscope 104/3(I): 283–293PubMedGoogle Scholar
  20. 21.
    Kelly P (1986) Computer-assisted stereotaxis: new approaches for the management of intracranial intra-axial tumors. Neurology 36: 535–541 PubMedCrossRefGoogle Scholar
  21. 22.
    Kwoh YS, Hou J, Jonckheere EA, Hayati S (Feb 1988) A robot with improved absolute positioning accuracy for CT-guided stereotactic brain surgery. IEEE Trans Biomed Eng 35(2)Google Scholar
  22. 23.
    Lun-Jou Lo JL, Marsh MW, Vannier VV, Patel Cranofacial Computer Assisted Surgical Planning and Simulation, W W W-PublicationGoogle Scholar
  23. 24.
    . Masamune K, Kobayashi E, Yoshitaka M, Suzuki M, Dohi T, Iseki H, Takakura K. Development of a MRI compatible needle insertion manipulator for stereotactic neurosurgery. pp 165–172Google Scholar
  24. 25.
    Mösges R, Schlöndorff G (1988) A new imaging method for intraoperative therapy control in skull-base surgery. Neurosurg Rev 11: 245–247PubMedCrossRefGoogle Scholar
  25. 26.
    Paul HA, Bargar WL, Mittelstaedt B, Taylor et al. (1992) Development of a surgical robot for cementless total hip arthroplasty. Clin Orthop 285:57–66PubMedGoogle Scholar
  26. 27.
    Reinhardt H, Meyer H, Amrein E (1988) A computer-assisted device for the intraoperative CT-correlated localization of brain tumors. Eur Surg Res 20:51–58PubMedCrossRefGoogle Scholar
  27. 28.
    Rovetta A, Remo Sala E (MRCAS ‘85) Robotics and tele-robotics applied to a prostatic biopsy on a human patient, pp 104–110Google Scholar
  28. 29.
    Sackier JM, Wang Y (1994) Robotically assisted laparoscopie surgery. Surg Endosc 8: 63–66PubMedCrossRefGoogle Scholar
  29. 30.
    Schurr MO, Breitwieser H, Melzer A et al. (1996) Experimental telemanipulation in endoscopic surgery. Surg Laparosc Endosc 6:167–175PubMedCrossRefGoogle Scholar
  30. 31.
    Taylor RH, Funda J, LaRose D, Treat M (1992) A telerobotic system for augmentation of endoscopic surgery. In: IEEE Engineering in medicine and biology society, pp 1054–1056Google Scholar
  31. 32.
    Taylor RH et al. (1996) Computer integrated surgery, MIT Press, CambridgeGoogle Scholar
  32. 33.
    Thirion J-P. Fast non-rigid matching of 3D medical images. Medical Robotics and Computer Aided Surgery Baltimore (USA), Nov. 1995Google Scholar
  33. 34.
    Troccaz J, Grimson E, Mösges R (eds) (1997) Lecture notes in computer science. Springer, Berlin Heidelberg New YorkGoogle Scholar
  34. 35.
    Watanabe E, Watanabe T, Manaka S, Mayanagi Y, Takakura K (1987) Three-dimensional digitizer (neuronavigator): new equipment for computed tomography-guided stereotaxic surgery. Surg Neurol 27:543–547PubMedCrossRefGoogle Scholar
  35. 36.
    Young RF (1987)b Application of robotics in stereotactic neurosurgery. Neurolog Res 9: 123–128Google Scholar
  36. 37.
    Pressing et al. (1991)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • L. M. Auer

There are no affiliations available

Personalised recommendations