Skip to main content

Linear Accelerator Radiosurgery for Arteriovenous Malformations: The Relationship of Size, Dose, Time, and Planning Factors onto Outcome

  • Conference paper
Minimally Invasive Techniques for Neurosurgery

Abstract

The management of arteriovenous malformations (AVMs) has been modified lately due to the availability of new techniques such as endovascular embolization, radiosurgery, or the combination of microsurgery, embolization, and radiosurgery [2, 4, 7, 9, 12, 16, 17, 30]. Besides preservation or improvement of neurological function, the ultimate goal in the treatment of AVMs is complete elimination of risk of hemorrhage. It is believed that since Steiner et al. [29] reported the first patient with an AVM to be treated by Gamma knife radiosurgery, more than 15000 AVM patients worldwide have been radiosurgically treated. The majority of large radiosurgery series report that AVM obliteration rates exceed about 80 % within a latency period of 2–3 years, at which point the risk of subsequent hemorrhage is eliminated. In this paper we report our clinical experience of 145 patients with AVMs treated between 1983 and 1993 using the non-converging arc technique and give an overview of the literature on linear accelerator radiosurgery treatment results for arteriovenous malformations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Betti OO, Munari C, Rosier R (1989) Stereotactic radiosurgery with the linear accelerator: treatment of arteriovenous malformations. Neurosurgery 24: 311–321

    Article  PubMed  CAS  Google Scholar 

  2. Bien S, Voigt K, Caplan R (1996) Interventional neuroradiology in the brain, head, and neck region. In: Brandt (ed) Neurological disorders - course and treatment. Academic, London, pp 333–368

    Google Scholar 

  3. Bunge HJC, Chinela AB, Guevara JA et al. (1992) Infratentorial arteriovenous malformations: radiosurgical treatment. In: Lunsford LD (ed) Stereotactic radiosurgery update. Elsevier, New York, pp 169–176

    Google Scholar 

  4. Colombo F, Benedetti A, Pozza F et al. (1989) Linear accelerator radiosurgery of cerebral arteriovenous malformations. Neurosurgery 24: 833–840

    Article  PubMed  CAS  Google Scholar 

  5. Colombo F, Pozza F, Chierego G, Casentini L, De Luca G, Francescon P (1994) Linear accelerator radiosurgery of cerebral arteriovenous malformations: an update. Neurosurgery 34:14–22

    Article  PubMed  CAS  Google Scholar 

  6. Debus J, Engenhart-Cabillic R, Rhein B, Schlegel W, Schad L, Pastyr O, Wannenmacher M (1994) Clinical application of conformal radiosurgery using multileaf-collimators. Int J Radiat Oncol Biol Phys 30: 265

    Article  Google Scholar 

  7. Deruty R, Pelissou-Guyotat I, Amat D, Mottolese C, Bascoulergue Y, Turjman F, Gerard JP (1995) Multidisciplinary treatment of cerebral arteriovenous malformations. Neurol Res 17:169–177

    PubMed  CAS  Google Scholar 

  8. Engenhart R, Kimmig BN, Höver KH et al.(1993)Long-term follow-up brain metastases treated by percutaneous stereo-tactic single high-dose irradiation. Cancer 71: 1353–1361

    Article  PubMed  CAS  Google Scholar 

  9. Engenhart R, Wowra B, Debus J, Kimmig B, Höver KH, Lorenz W, Wannenmacher M (1994) The role of high-dose, single-fraction irradiation in small and large intracranial arteriovenous malformations. Int J Radiat Oncol Biol Phys 30:521–529

    Article  PubMed  CAS  Google Scholar 

  10. Essig M, Engenhart R, Knopp MV et al. (1996) Cerebral arteriovenous malformations: improved nidus demarcation by means of dynamic tagging MR-angiography. Magn Reson Imaging 14: 227–233

    Article  PubMed  CAS  Google Scholar 

  11. Flickinger JC, Kondziolka D, Lunsford LD (1995) Radio-surgery of benign lesions. Semin Radiat Oncol 5: 220–224

    Article  PubMed  Google Scholar 

  12. Friedman WA, Bova FJ (1992) Linear accelerator radiosurgery for arteriovenous malformations. J Neurosurg 77: 832–841

    Article  PubMed  CAS  Google Scholar 

  13. Friedman WA, Bova FJ, Mendenhall WM (1995) Linear accelerator radiosurgery for arteriovenous malformations: the relationship of size to outcome. J Neurosurg 82:180–189

    Article  PubMed  CAS  Google Scholar 

  14. Friedman WA, Blatt DL, Bova FJ, Buatti JM, Mendenhall WM, Kubilis PS (1996) The risk of hemorrhage after radiosurgery for arteriovenous malformations. J Neurosurg 84: 912–919

    Article  PubMed  CAS  Google Scholar 

  15. Hartmann GH, Schlegel W, Sturm V, Kober B, Pastyr O, Lorenz WJ (1985) Cerebral radiation surgery using moving field irradiation at a linear accelerator facility. Int J Radiat Oncol Biol Phys 11:1185–1192

    Article  PubMed  CAS  Google Scholar 

  16. Heros RC, Korosue K, Diebold PN (1990) Surgical excision of cerebral arteriovenous malformations: late results. Neurosurgery 4: 570–576

    Google Scholar 

  17. Lawton MT, Hamilton MG, Spetzler RF (1995) Multimodal treatment of deep arteriovenous malformations: thalamus, basal ganglia, and brain stem. Neurosurgery 37: 29–36

    Article  PubMed  CAS  Google Scholar 

  18. Mehta MP, Noyes WR, Mackie TR (1995) Linear accelerator configurations for radiosurgery. Semin Radiat Oncol 5: 203–212

    Article  PubMed  Google Scholar 

  19. Morikawa M, Numaguchi Y, Rigamonti D et al. (1996) Radio-surgery for cerebral arteriovenous malformations: assessment of early phase magnetic resonance imaging and significance of gadolinium-DTPA enhancement. Int J Radiat Oncol Biol Phys 34: 663–675

    Article  PubMed  CAS  Google Scholar 

  20. Pastyr O, Schlegel W, Höver KH, Rhein B, Maier-Borst W (1993) Ein Micro-Multileaf-Kollimator für stereotaktisch geführte Strahlenbehandlungen. In: Müller RG, Erb J (eds) Medizinische Physik. Deutsche Gesellschaft für Medizinische Physik, pp 234–235

    Google Scholar 

  21. Phillips MH, Kessler M, Chuang FYS, Frankel KA, Lyman JT, Fabrikant JI, Levy RP (1991) Image correlation of MRI and CT in treatment planning for radiosurgery of intracranial vascular malformations. Int J Radiat Oncol Biol Phys 20: 881–889

    Article  PubMed  CAS  Google Scholar 

  22. Podgorsak EB, Pike GB, Olivier A et al. (1989) Radiosurgery with high energy photon beams: a comparison among techniques. Int J Radiat Oncol Biol Phys 16: 857–865

    Article  PubMed  CAS  Google Scholar 

  23. Pollock BE, Lunsford LD, Kondziolka D, Maitz A, Flickinger JC (1994) Patient outcomes after stereotactic radiosurgery for “operable” arteriovenous malformations. Neurosurgery 35:1–8

    Article  PubMed  CAS  Google Scholar 

  24. Pollock BE, Lunsford LD, Kondziolka D, Bissonette DJ, Flickinger JC (1996) Stereotactic radiosurgery for postgeniculate visual pathway arteriovenous malformations. J Neurosurg 84: 437–441

    Article  PubMed  CAS  Google Scholar 

  25. Rhein B, Engenhart R, Debus J et al.(1994) Stereotaktische Hochdosis-Konvergenztherapie bei irregulär geformten Zielvolumina. Beschreibung einer Mehrfeldertechnik mit 11 bis 14 nicht-koplanaren irregulären Stehfeldern. In: Tautz M (ed). Medizinische Physik 94. Deutsche Geselschaft für Medizinische Physik, pp 224–225

    Google Scholar 

  26. Schad LR, Bock M, Baudendistel K et al. (1996) Improved target volume definition in radiosurgery of arteriovenous malformations by stereotactic correlation of MRA, MRI, blood bolus tagging, and functional MRI. Fur Radiol 6:38–45

    CAS  Google Scholar 

  27. Souhami LA, Olivier EB, Podgorsak MP, Pike GB (1990) Radiosurgery of cerebral arteriovenous malformations with the dynamic stereotactic irradiation. Int J Radiat Oncol Biol Phys 19: 775–782

    Article  PubMed  CAS  Google Scholar 

  28. Spetzler RF, Martin NA (1986) A proposed grading system for arteriovenous malformations. J Neurosurg 65: 476–483

    Article  PubMed  CAS  Google Scholar 

  29. Steiner L, Leksell L, Greitz T (1972) Stereotactic radiosurgery for cerebral arteriovenous malformations. N Engl J Med 323: 96–101

    Google Scholar 

  30. Steiner L, Lindquist C, Adler JR, Torner JC, Alves W, Steiner M (1992) Clinical outcome of radiosurgery for cerebral arteriovenous malformations. J Neurosurg 77:1–8

    Article  PubMed  CAS  Google Scholar 

  31. Yamamoto Y, Coffey RJ, Nichols DA, Shaw EG (1995) Interim report on the radiosurgical treatment of cerebral arteriovenous malformations. J Neurosurg 83: 832–837

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Engenhart-Cabillic, R., Debus, J. (1998). Linear Accelerator Radiosurgery for Arteriovenous Malformations: The Relationship of Size, Dose, Time, and Planning Factors onto Outcome. In: Hellwig, D., Bauer, B.L. (eds) Minimally Invasive Techniques for Neurosurgery. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58731-3_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58731-3_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63701-8

  • Online ISBN: 978-3-642-58731-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics