PET Imaging in Oncology

  • W. N. Tauxe
  • P. T. Kirchner
  • D. W. Townsend
  • C. C. Meltzer


After receiving a report of a negative biopsy for cancer, patients are usually pleased and relieved whether it be related to breast, gastrointestinal (GI) tract, lung, or other cancer. However, their pleasure is often shortlived, since many will experience significant postoperative complications in the form of pain, needless impoverishment, and many will learn that they were inadequately staged initially and wish that they had had a better preoperative work-up. Only 20% of solitary lung nodules are benign, so that for every happy patient after excision biopsy, four others will learn that their ‘nodule’ had the capability of metastasis, and a radically different therapeutic course might have been taken from the start. For cancer of the GI tract, a similar situation exists, and the reported numbers are more like one and three. For breast cancer, the numbers are reversed, with three negative dissections for every positive one, but for those three initially happy women, some will bear some functional disorder from the surgery for long periods and they, too, may wish they had had a more definitive less invasive pre-operative diagnostic work-up. All these patients may have undergone examination with computed tomography (CT), magnetic resonance imaging (MRI) or ultrasound (US), all non-invasive and much better than they once were; still, as screening procedures, there are many holes in their nets.


Positron Emission Tomography Thyroid Cancer Positron Emission Tomography Image Positron Emission Tomography Study Adrenal Metastasis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rigo P, Paulus P, Kaschten B, Hustinx R, Bury T, Jerusalem G, Bénoit T, Foidart-Willems J (1996) Oncologic applications of positron emission tomography with fluorine-18 fluorodeoxyglucose. Eur J Nucl Med 23:1641–1674PubMedGoogle Scholar
  2. 2.
    Conti P, Lilien D, Hawley K, Keppler J, Grafton ST, Bading JR (1996) PET and 18F in oncology: a clinical update. Nucl Med Biol 23:717–735PubMedGoogle Scholar
  3. 3.
    Kubota K, Ishiwata K, Kubota R, Yamada S, Tada M, Sato T, Ido T (1991) Tracer feasibility for monitoring tumor radiotherapy: a quadruple tracer study with fluorine-18fluorodeoxyglucose or fluorine-18-fluorodeoxyuridine, L-(methyl-14C)methionine, (6–3)thymidine and gallium-67. J Nucl Med 32:2118–2123PubMedGoogle Scholar
  4. 4.
    Wahl R, Clavo A (1993) Effects of hypoxia on cultured human tumor cell uptake of thymidine, L-methionine and FDG. J Nucl Med 34:73PGoogle Scholar
  5. 5.
    Minn H, Clavo A, Grenman R, Wahl R (1995) In vitro comparison of cell proliferation kinetics and uptake of tritiated fluorodeoxyglucose and L-methionine in squamous-cell carcinoma of the head and neck. J Nucl Med 36:252–258PubMedGoogle Scholar
  6. 6.
    Willemsen A, Waarde A van, Paans A, Pruim J, Luurtsema G, Go K, Vaalburg W (1995) In vivo protein synthesis rate determination in primary or recurrent brain tumors using L-[1-C11] tyrosineand PET. J Nucl Med 36:411–419PubMedGoogle Scholar
  7. 7.
    Hamacher K, Coenen H, Stocklin G (1986) Efficient stereo-specific synthesis of no-carrier-added 2-[18F]-fluoro-2deoxy-D-glucose using aminopolyether supported nucleophilic substitution. J Nucl Med 27:235–238PubMedGoogle Scholar
  8. 8.
    Coenan H, Colosimo M, Schueller M, Stocklin G, Sundoro Wu, Whitmore WJ (1985) Mild and effective aliphatic and aromatic n.c.a. 18F-fluorination using crown ether. J Nucl Med 26:P37Google Scholar
  9. 9.
    Padgett H, Schmidt D, Luxen A, Bida G, Satyamurthy N, Barrio J (1989) Computer-controlled radiochemical synthesis: a chemistry process control unit for the automated production of radiochemicals. Appl Radiat Isot 40:433–445Google Scholar
  10. 10.
    Warburg O (1931) The metabolism of tumors. Smith, New York, pp 254–270Google Scholar
  11. 11.
    Hiraki Y, Rosen O, Birnbaum M (1988) Growth factors rapidly induce expression of the glucose transporter gene. J Biol Chem 27:13655–13662Google Scholar
  12. 12.
    Hiraki Y, De Herreros A, Birnbaum M (1989) Transformation stimulates glucose transporter gene expression in the absence of protein kinase C. Proc Natl Acad Sci USA 86:8252–8256PubMedGoogle Scholar
  13. 13.
    Murakami T, Nishiyama T, Shirotani T, Shinohara Y, Kan M, Ishii K, Kanai F, Nakazuru S, Ebina Y (1992) Identification of two enhancer elements in the gene encoding the type 1 glucose transporter from the mouse which are responsive to serum, growth factor, and oncogenes. J Biol Chem 267:9300–9306PubMedGoogle Scholar
  14. 14.
    Shawver L, Olson S, White M, Weber M (1987) Degradation and biosynthesis of the glucose transporter protein in chicken embryo fibroblasts transformed by src oncogene. Mol Cell Biol 7:2112–2118PubMedGoogle Scholar
  15. 15.
    Birnbaum M, Haspel H, Rosen O (1987) Transformation of rat fibroblasts by FSV rapidly increases glucose transporter gene transcription. Science 235:1495–1498PubMedGoogle Scholar
  16. 16.
    Slater D, Baldwin S, Lienhard G, Weber M (1982) Proteins antigenically related to the human erythrocyte glucose transporter in normal and Rous sarcoma virus-transformed chicken embryo fibroblasts. Proc Natl Acad Sci USA 79:1540–1544Google Scholar
  17. 17.
    Gallagher B, Fowler J, Gutterson N, McGregor R, Wan C, Wolf A (1989) Metabolic trapping as a principle of radio-pharmaceutical design: some factors responsible for the biodistribution of F-18–2-deoxy-2-fluoro-D-glucose. J Nucl Med 19:1154–1161Google Scholar
  18. 18.
    Sokoloff L, Reivich M, Kennedy C, Des Rosiers M, Patlak C, Pettigrew K, Sakunache O, Shinohara M (1977) The (14C)deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure and normal values on the conscious and anesthetized albino rat. J Neurochem 28:897–916PubMedGoogle Scholar
  19. 19.
    Kubota R, Yamada S, Kubota K, Ishiwata K, Tamahashi N, Ido T (1992) Intratumoral distribution of fluorine-18fluorodeoxyglucose in vivo: high accumulation in macrophages and granulation tissues studied by microautoradiographic comparison with FDG. J Nucl Med 33:1972–1980PubMedGoogle Scholar
  20. 20.
    Minn H, Joensuu H, Ahonen A, Klemi P (1988) Fluorodeoxyglucose imaging: a method to assess the proliferative activity of human cancer in vivo. Cancer 61:1776–1781PubMedGoogle Scholar
  21. 21.
    Yao W, Hoh C, Hawkins R, Glaspy J, Weil J, Lee S, Maddahi J, Phelps M (1995) Quantitative PET imaging of bone marrow glucose metabolic response to hematopoietic cytokines. J Nucl Med 36:794–799PubMedGoogle Scholar
  22. 22.
    Lindholm P, Minn H, Leskinen-Kallio S, Bergman J (1993) Influence of the blood glucose concentration on FDG uptake in cancer. J Nucl Med 34:1–6PubMedGoogle Scholar
  23. 23.
    American Cancer Society (1994) Cancer facts and figures. American Cancer Society, AtlantaGoogle Scholar
  24. 24.
    Zerhouni E, Stitik F, Siegelman S, Naidich D, Sagel S, Proto A, Muhm J, Walsh J, Martinez CR, Heelan R (1986) Computed tomography of the pulmonary nodule: a national cooperative study. Radiology 160:319–327PubMedGoogle Scholar
  25. 25.
    Gurney J (1993) Determining the likelihood of malignancy in solitary pulmonary nodules with Bayesian analysis, part I: theory. Radiology 186:405–413PubMedGoogle Scholar
  26. 26.
    Lillington G (1988) Systemic diagnostic approach to pulmonary nodules. McGraw-Hill, New YorkGoogle Scholar
  27. 27.
    Pearson F, Delarue N, Ilves R, Todd T, Cooper J (1982) Significance of positive nodes identified at mediastinoscopy in patients with resectable cancer of the lung. J Thorac Cardiovase Surg 83:1–11Google Scholar
  28. 28.
    Bury T, Paulus P, Weber T et al (1996) Potential interest of pleural disease evaluation with FDG-PET imaging: preliminary report. Eur J Nucl Med 23:1186Google Scholar
  29. 29.
    Lowe V, Fletcher J, Gobar L, Lawson M, Kirchner P, Valk P, Karis J, Hubner K, Delbeke D, Heiberg E, Patz E, Coleman R (1998) Prospective investigation of positron emission tomography in lung nodules. J Clin Oncol 16:1075–1084PubMedGoogle Scholar
  30. 30.
    Bury T, Dowlati A, Paulus P, Corhay J, Hustinx R, Ghaye B, Rademecker M, Rigo P (1997) Whole-body 18-FDG positron emission tomography in the staging of non-small cell lung cancer. Eur Respir J 10:2529–2534PubMedGoogle Scholar
  31. 31.
    Steinert H, Hauser M, Allemann F, Engel H, Berthold T, Schultheiss G von, Weder W (1997) Non-small cell lung cancer: nodal staging with FDG Pet versus CT with correlative lymph node mapping and sampling. Radiology 202:441–446PubMedGoogle Scholar
  32. 32.
    Valk P, Pounds T, Hopkins D, Haseman M, Hofer G, Greiss H, Myers R, Lutrin C (1995) Staging non-small cell lung cancer by whole-body positron emission tomographic imaging. Ann Thorac Surg 60:1573–1582PubMedGoogle Scholar
  33. 33.
    Erasmus J, Patz E, McAdams H, Murray J, Herndon J, Coleman R, Goodman P (1997) Evaluation of adrenal masses in patients with bronchogenic carcinoma using 18-Ffluorodeoxy-glucose positron emission tomography. AJR Am J Roentgenol 168:1357–1360PubMedGoogle Scholar
  34. 34.
    Vansteenkiste J, Stroobants S, DeLeyn P, Dupont P, Verschakelen J, Nackaerts K, Mortelmans L (1997) Mediastinal lymph node staging with FDG PET in patients with poten-tially operable non-small cell lung cancer: a prospective analysis of cases. Chest 112:1480–1486PubMedGoogle Scholar
  35. 35.
    Valk P, Pounds T, Tesar R, Hopkins D, Haseman D (1996) Cost-effectiveness of PET imaging in clinical oncology. Nucl Med Biol 23:737–743PubMedGoogle Scholar
  36. 36.
    Moss A (1989) Imaging of colorectal carcinoma. Radiology 170:308–310PubMedGoogle Scholar
  37. 37.
    Schlag P, Lehner B, Strauss L, Georgi P, Herfarth C (1989) Scar or recurrent rectal cancer. Arch Surg 124:197–200PubMedGoogle Scholar
  38. 38.
    Wanebo H, Llaneras M, Martin T, Kaiser D (1989) Prospec-tive monitoring trial for carcinoma of colon and rectum after surgical resection. Surg Gynecol Obstet 169:479–487PubMedGoogle Scholar
  39. 39.
    Moertel C, Fleming T, MacDonald J, Haller D, Laurie J, Tangen C (1993) An evaluation for the carcinoembryonic anti-gen (CEA) test for monitoring patients with resected colon cancer. JAMA 270:943–947PubMedGoogle Scholar
  40. 40.
    Schiepers C, Van Riet H, Mortelmans L, DeRoo M (1996) Limitations of parathyroid imaging with Tc-99mTc/T1–201 subtraction and early/delayed Tc-99m MIBG imaging. Clin Nucl Med 21:502PubMedGoogle Scholar
  41. 41.
    Delbeke D, Vitola J, Sandler M, Arildsen R, Powers T, Wright JJ, Chapman W, Pinson C (1997) Staging recurrent metastatic colorectal cancer with PET. J Nucl Med 38:1196–1201PubMedGoogle Scholar
  42. 42.
    Ogunbiyi O, Flanagan F, Dehdashti F, Siegel B, Trask D, Birnbaum E, Fleshman J, Read T, Philpott G (1997) Detection of recurrent and metastatic colorectal cancer: comparison of. positron emission tomography and computed tomography. Ann Surg Oncol 4:613–620PubMedGoogle Scholar
  43. 43.
    Ito K, Kato T, Tadokoro M, Ishigushi M, Oshima M, Ishigaki T, Sakuma S (1992) Recurrent rectal cancer and scar: differ-entiation with PET and NMR imaging. Radiology. 182:549–552PubMedGoogle Scholar
  44. 44.
    Schiepers C, Pennick F, Merckx E, Mortelmans L, Vieugals S, Aerts R, Kerremans R, DeRoo M (1993) Total body PET imaging of recurrent recto-sigmoid cancer with 18F-FDG. J Nucl Med 34:222PGoogle Scholar
  45. 45.
    Scott A, Berlangieri S, Zalcberg R, Fox R, Cebon J, McLeish A, Thomas D, Chan G, Tochon-Danguy H, Egan G, MacKay W (1995) Detection of recurrent colorectal carcinoma with 18F-FDG positron emission tomography. J Nucl Med 36:57PGoogle Scholar
  46. 46.
    Falk P, Gupta N, Thorson A, Frick M, Boman B, Christensen M, Blatchford G (1994) Positron emission tomography for preoperative staging of colorectal carcinoma. Dis Colon Rectum 37:153–156PubMedGoogle Scholar
  47. 47.
    Fong Y, Blumgart L, Cohen A (1995) Surgical treatment of Colorectal metastases to the liver. CA Cancer J Clin 45:50–62PubMedGoogle Scholar
  48. 48.
    Abdel-Nabi H, Doerr R, Lamonica D, Cronin V, Galantowicz P, Carbone G, Spaulding M (1998) Staging of primary colo-rectal carcinomas with fluorine-18 fluorodeoxyglucose. Whole-body PET: correlation with histopathologic and CT findings. Radiology 206:755–760PubMedGoogle Scholar
  49. 49.
    Zanzi I, Robeson W, Vinciguerra V, Kroop S, Chaly T, Schul-man P, Dahl R, Goldman I, Allen S, Margouleff D (1990) Positron tomography (PET) imaging in patients with carcinoma of the pancreas. Proc Am Soc Clin Oncol 9:434AGoogle Scholar
  50. 50.
    Stollfuss J, Glatting G, Friess H, Kocher F, Berger H, Reske S (1995) 2-(fluorine-18-fluoro-2-deoxy-D-glucose PET in detection of pancreatic cancer: value of quantitative image interpretation. Radiology 195:339–344PubMedGoogle Scholar
  51. 51.
    Friess H, Langhans J, Ebert M, Beger H, Stollfuss J, Reske S, Buchler M (1995) Diagnosis of pancreatic cancer by 2[18F]- fluoro-2-deoxy-D-glucose positron emission tomography. Gut 36:771–777PubMedGoogle Scholar
  52. 52.
    Zimny M, Bares R, Gab J (1997) Fluorine-18 fluorodeoxyglu-cose positron emission tomography in the differential diagnosis of pancreatic carcinoma: a report of 106 cases. Eur J Nucl Med 24:676–682Google Scholar
  53. 53.
    Klever P, Bares R, Fass J (1992) PET with fluorine-18-labeled deoxyglucose for pancreatic disease. Lancet 340:1158–1159PubMedGoogle Scholar
  54. 54.
    Bares R, Klever P, Hambuechen U, Hellwig D, Fass J, Buell U, Schumpelick V (1993) Positron emission tomography (PET) with fluorine-18-labeled deoxyglucose (FEG) for detection of pancreatic cancer (PC): comparison with CT, ultrasonography (US) and ERCP. J Nucl Med 34:98PGoogle Scholar
  55. 55.
    Higashi T, Tamaki N, Torizuka T, Inokuma T, Honda T, Magata Y, Yonekura Y, Ohshio G, Hosotani R, Imamura M, Konishi J (1995) Differentiation of malignant from pancreatic tumors by FDG-PET: comparison with CT, US, and endoscopic ultrasonography. J Nucl Med 195:224PGoogle Scholar
  56. 56.
    Inokuma T, Tamaki N, Torizuka T, Magata Y, Fujii M, Yonekura Y, Ohshio G, Imamura M, Konishi J (1995) Evaluation of pancreatic tumors with positron emission tomography and F-18 fluorodeoxyglucose: comparison with CT and US. Radiology 195:345–352PubMedGoogle Scholar
  57. 57.
    Stollfuss J, Schonberger J, Fries H, Beger H, Reske S (1995) Improved diagnosis of pancreatic carcinoma with FDG-PET compared to CT in non-invasive imaging modalities. Eur J Nucl Med 22:759PGoogle Scholar
  58. 58.
    Stollfuss J, Kocher F, Glatting G, Reske S (1995) Pancreatic cancer vs. chronic pancreatitis: diagnosis with [18F]-FDG PET, CT and ERCP. J Nucl Med 36:223–224Google Scholar
  59. 59.
    Stollfuss J, Kocher F, Glatting G, Glatz S, Reske S (1995) 18-FDG PET, CT and ERCP in the diagnosis of pancreatic cancer. Eur J Nucl Med 22:826PGoogle Scholar
  60. 60.
    Bares R, Dohmen BM, Cremerius U, Fass J, Teusch M, Bull U (1996) Results of positron emission tomography with fluorine-18 labeled fluorodeoxyglucose in differential diagnosis and staging of pancreatic carcinoma (in German). Radiologe 36:435–440PubMedGoogle Scholar
  61. 61.
    Inokuma T, Tamaki N, Torizuka T, Fujita T, Magata Y, Yonekura Y, Ohshio G, Imamura M, Konishi J (1995) Value of fluorine-18 fluorodeoxyglucose and thallium-201 in the detection of pancreatic cancer. J Nucl Med 36:229–235PubMedGoogle Scholar
  62. 62.
    Crippa F, Gavazzi C, Bozzetti F, Chiesa C, Pascali C, Bogni A, De Sanctis V, Decise D, Schiavini M, Cucchetti G, Bombardiers E (1997) The influence of blood glucose levels on [18F] fluorodeoxyglucose (FDG) uptake in cancer: a PET study in liver metastases from colorectal carcinomas. Tumori 83:748–752PubMedGoogle Scholar
  63. 63.
    Flanigan F, Dehdashti F, Siegel B, Trask D, Sundaresan S, Patterson G, Cooper J (1997) Staging of esophageal cancer with 18F-fluorodeoxyglucose positron emission tomography. AJR Am J Roentgenol 168:417–424Google Scholar
  64. 64.
    Block M, Patterson G, Sundaresan R, Bailey M, Flanagan F, Dehdashti F, Siegel B, Cooper J (1997) Improvement in staging of esophageal cancer with the addition of positron emission tomography. Ann Thorac Surg 64:770–776PubMedGoogle Scholar
  65. 65.
    Luketich J, Schauer P, Melzer CC, Landrenaud R, Urso G, Townsend D, Ferson P, Keenan R, Belani C (1997) Role of positron emission tomography in staging esophageal cancer. Ann Thoracic Surg 64:765–769Google Scholar
  66. 66.
    Boland G, Goldberg M, Lee M, Mayo-Smith W, Dixon J, McNicholas M, Mueller P (1995) Indeterminate adrenal mass in patients with cancer: evaluation at PET with 2-[F-18]fluoro-2-deoxy-D-glucose. Radiology 194:131–134PubMedGoogle Scholar
  67. 67.
    Skolnick A (1991) Melanoma epidemic yields grim statistics. JAMA 265:3217–3218Google Scholar
  68. 68.
    Gumport S, Meyer H (1959) treatment of 126 cases of malignant melanoma: long-term results. Ann Surg 150:989–992PubMedGoogle Scholar
  69. 69.
    Gritters L, Francis I, Asadny K, Wahl R (1993) Initial assessment of positron emission tomography using 2-fluorine-18fluoro-2-deoxy-D-glucose in the imaging of malignant melanoma. J Nucl Med 34:1420–1427PubMedGoogle Scholar
  70. 70.
    Kirgan D, Guenther J, Bhattathiry M, Glass E, Hoh C, Maddahi H, Bland W, Morton D (1994) The importance of whole-body PET scans on the management of metastatic malignant melanoma. Proc Soc Am Soc Clin Oncol 13:396Google Scholar
  71. 71.
    Yao W, Hoh C, Glaspy J, Asgarzadie F, Kirgan D, Morton D, Bhattathiry M, Glass E, Phelps M, Maddahi J (1994) Whole-body FDG PET imaging for staging of malignant melanoma: is it cost effective? Nucl Med 35:8PGoogle Scholar
  72. 72.
    Steinert H, Huch-Bonim RA, Buch A, Boni R, Berthold T, Marincek B, Burg G, Von Schultheiss G (1995) Malignant melanoma: staging with whole-body positron emission tomography and 2-[F-18]-fluro-2-deoxy-D-glucose. Radiology 195:705–709PubMedGoogle Scholar
  73. 73.
    Pounds T, Valk P, Haseman M, Myers R, Lutrin C (1995) Whole-body PET-FDG imaging in diagnosis of recurrent colorectal cancer. J Nucl Med 36:57PGoogle Scholar
  74. 74.
    Wahl R, Hutchins G, Buchsbaum D, Liebert M, Grossman H, Fisher S (1991) 18F-2-deoxy-2-fluoro-D-glucose uptake into human tumor xenografts. Feasibility studies for cancer imaging with positron-emission tomography. Cancer 57:1544–1550Google Scholar
  75. 75.
    Strauss L, Tilgen W, Dimitrakopoulou A, Haverkorn U, Oberdorfer F, Ostertag H (1992) FDG in patients with metastatic melanoma before and after therapy. Radiology 185:108PGoogle Scholar
  76. 76.
    Utech C, Young C, Winter P (1996) Prospective evaluation of fluorine-18 fluorodeoxyglucose positron emission tomography in breast cancer for staging of the axilla related to surgery and immunocytochemistry. Eur J Nucl Med 23:1588–1593PubMedGoogle Scholar
  77. 77.
    Adler L, Faulhaber P, Schnur K, Al-kasi N, Shenck RR (1997) Axillary lymph node metastases: screening with [F-18] 2-deoxy-2-fluoro-2-glucose (FDG) PET. Radiology 203:323–327PubMedGoogle Scholar
  78. 78.
    Avril N, Dose J, Janicke F, Ziegler S, Romer W, Weber W, Herz M, Nathrath W, Graith H, Schwaiger M (1996) Assessment of axillary lymph node involvement in breast cancer patients with positron emission tomography using radiolabeled 2-(fluorine-18)-fluoro-2-deoxy-D-glucose. J Natl Cancer Inst 88:1204–1209PubMedGoogle Scholar
  79. 79.
    Kubota K, Matsuzawa T, Ameniya A, Kondo M, Fujiwara T, Watanuki S, Ito M, Ido T (1989) Imaging of the breast with 18F-fluorodeoxyglucose and positron emission tomography. J Comput Assist Tomogr 13:1097–1098PubMedGoogle Scholar
  80. 80.
    Minn H, Leskinen-Kallio S, Lindholm P, Bergman J, Ruotasalainen U, Teras M, Haaparanta M (1993) 18Ffluorodeoxyglucose uptake in tumors: kinetic vs. steady-state methods with reference to plasma insulin. J Comput Assist Tomogr 17:115–123PubMedGoogle Scholar
  81. 81.
    Kim E, Kim B, Haynie T, Podoloff D, Wong W, Yang D, Tilbury R, Hortobagyi G (1992) Evaluation of preoperative chemotherapy in patients with locoregionally advanced breast cancer using [18F]-FDG PET. J Nucl Med 33:828Google Scholar
  82. 82.
    Scheidhauer K, Scharl A, Pietrzyk U, Wagner R, Schomacker K, Thiessen P, Schicha H (1994) [18F]-FDG-PET in breast tumors. Eur J Nucl Med 21:749Google Scholar
  83. 83.
    Hoh C, Glaspy J, Choi Y, Tse N, Rege S, Nitsche E, Dahlbom M, Maddahi J, Hoffman E, Phelps M, Hawkins R (1992) Quantitative dynamic whole body FDG PET imaging of breast cancer. J Nucl Med 33:828PGoogle Scholar
  84. 84.
    Hoh CK, Hawkins RA, Glaspy JA, Dahlborn M, Tse NY, Hoffman EJ, Schiepers C, Choi Y, Roge S, Nitsche E et al (1993) Cancer detection with whole body PET using 2-[18F]fluoro-2-deoxy-D-glucose. J Comput Assist Tomogr 17:582–584PubMedGoogle Scholar
  85. 85.
    Hoh C, Hawkins R, Glaspy J, Choi Y, Tse M, Dahlbom M, Maddahi J, Phelps M (1994) Comparison of quantitative methods breast cancer studies. J Nucl Med 35:141PGoogle Scholar
  86. 86.
    Dehdashti F, Mortimer F, Griffeth L, McGuire A, Radford D, Fusselman M, Burney R, Bonaser T, Siegel B, Katzenellenbogen J, Welch M (1995) Positron tomographic assessment of breast lesions with FDG and FES. J Nucl Med 36:1766–1767PubMedGoogle Scholar
  87. 87.
    Jacobs M, Mantil J, Peterson C, Reiling R, Glaser R, Satter M, Nickerson J, Dunigan K, Brackney M (1994) FDG PET in breast cancer. J Nucl Med 35:142PGoogle Scholar
  88. 88.
    Avril N, Janicke F, Dose J, Ziegler S, Bense S, Hertz M, Langhammer H, Graeff H, Schwaiger M (1994) Imaging of breast tumors with FDG-PET in comparison with histology. Eur J Nucl Med 21:749Google Scholar
  89. 89.
    Antman K, Ayash L, Elias A, Wheeler C, Hunt M, Eder J, Tetcher B, Critchlow J, Bibbo J, Schnipper L (1992) A phase-II study of high-dose cyclophosphamide, thiotepa, and carboplatin with autologous marrow support in women with measurable advanced breast cancer responding to standard-dose therapy. J Clin Oncol 10:102–110PubMedGoogle Scholar
  90. 90.
    Hillner B, Thomas J, Desch C (1992) Efficacy and cost-effectiveness of autologous bone marrow transplantation in metastatic breast cancer. JAMA 267:2055–2061PubMedGoogle Scholar
  91. 91.
    Alexander J, Gillespie P, Edelstyn G (1976) Serial bone scanning using technetium-99m diphosphonate in patients undergoing cyclical combination chemotherapy for advanced breast cancer. J Nucl Med 1:13–17Google Scholar
  92. 92.
    Arnstein N, Harbert J, Byrne P (1984) Efficacy of bone and liver scanning in breast cancer patients treated with adjuvant chemotherapy. Cancer 54:2243–2247PubMedGoogle Scholar
  93. 93.
    Jacobson A, Shapiro C, Kaplan W (1995) Bone metastasis in patients with breast cancer: Significance of scintigraphic patterns at presentation and follow-up. J Nucl Med 34:74PGoogle Scholar
  94. 94.
    Chaiken L, Rege S, Hoh C, Choi Y, tabour B, Juillard G, Hawkins R, Parker R (1993) Positron emission tomography with flurodeoxyglucose to evaluate tumor response and control after radiation therapy. Int J Radiat Oncol Biol Phys 27:455–464PubMedGoogle Scholar
  95. 95.
    Wahl R, Zasadny K, Helvie M, Hutchins G, Weber B, Cody R (1993) Metabolic monitoring of breast cancer chemohormonotherapy using positron emission tomography: initial evaluation. J Clin Oncol 11:2101–2111PubMedGoogle Scholar
  96. 96.
    Wahl R, Zasadny K, Cody R, Helvie M (1994) FDG accumulation in normal breasts declines with aging. J Nucl Med 35:142PGoogle Scholar
  97. 97.
    Conti P, Wdowczyk J, Grafton S (1995) Positron emission tomography (PET) imaging as a diagnostic adjunct in problematic breast cancer cases. 18th Annual San Antonio Breast Cancer Symposium. San Antonio, TXGoogle Scholar
  98. 98.
    Brandth S, Peters W, Atwater S, Kurtzberg J, Borowitz M, Jones R, Shpall E, Bast R, Gilbert C, Oette DH (1988) Effect of recombinant human granulocyte-macrophage colony-stimulating factor on hematopoietic reconstruction after high-dose chemotherapy and autologous bone marrow transplantation. N Engl J Med 318:869–876Google Scholar
  99. 99.
    Tauxe W, Thorsen H (1969) Cerebrovascular permeability studies in cerebral neoplasms and vascular lesions: optimal dose-to-scan interval for pertechnetate brain scanning. J Nucl Med 10:34–39PubMedGoogle Scholar
  100. 100.
    Di Chiro G (1986) Positron emission tomography using 18Ffluoro-deoxyglucose in brain tumors. A powerful diagnostic and prognostic tool. Invest Radiol 22:360–371Google Scholar
  101. 101.
    Johnstone R, Scholefield P (1965) Amino acid transport in tumor cells. Adv Cancer Res 9:143–226PubMedGoogle Scholar
  102. 102.
    Foster D, Pardee A (1969) Transport of amino acids by confluent 3T3 and polyoma virus-transformed 3T3 cells growing on glass cover slips. J Biol Chem 244:2675–2681PubMedGoogle Scholar
  103. 103.
    Isselbacher K (1972) Sugar and amino acid transport by cells in culture: differences between normal and malignant cells. N Engl J Med 286:929–933PubMedGoogle Scholar
  104. 104.
    Parnes J, Isselbacher K (1978) Transport alterations in virus transformed cells. Prog Exp Tumor Res 22:79–122PubMedGoogle Scholar
  105. 105.
    Conti P, Kleinert E, Schmall B, Sundoro-Wu B, Whitmore WJ (1983) The dunning R3327G prostate adenocarcinoma tumor model: tumor localization of radiolabeled thymidine: a potential agent for imaging with PET. J Nucl Med 24:P40Google Scholar
  106. 106.
    Conti P, Schmall B, Kleinert E, Herr H, Whitmore WJ (1984) Chemotherapeutic induced changes in the accumulation of radiolabeled thymidine (TdR), 2-deoxy-D-glucose (2DG). and alpha-aminoisobutyric acid (AIB) in rat prostatic carcinoma. Biochemistry 23:3379Google Scholar
  107. 107.
    Conti P, Kleinert E, Schmall B et al (1984) Potential use of carbon-11 labeled thymidine for studying the effect of therapy on prostate carcinoma in vivo. 32nd Meeting of the Radiation Research Society. Orlando, FLGoogle Scholar
  108. 108.
    Cleaver J (1967) Thymidine metabolism and cell kinetics. North Holland, AmsterdamGoogle Scholar
  109. 109.
    Frindel E, Malaise F, Tubiana M (1968) Cell proliferation kinetics in five human solid tumors. Cancer 22:661–620Google Scholar
  110. 110.
    Tew K, Taylor D (1978) The relationship of thymidine metabolites as measure of DNA synthesis and tissue proliferation. Eur J Cancer 14:153–168PubMedGoogle Scholar
  111. 111.
    Larson S, Weiden P, Granbaum Z, Rasey J, Kaplan H, Graham M, Harp G, Sale G, Williams D (1981) Positron imaging feasibility studies I. Characteristics of [3H] thymidine uptake in rodent and canine neoplasm. J Nucl Med 22:869–874PubMedGoogle Scholar
  112. 112.
    Shields A, Lim K, Grierson J, Link J, Krohn K (1990) Utilization of labeled thymidine in DNA synthesis: studies for PET. J Nucl Med 31:337–342PubMedGoogle Scholar
  113. 113.
    Volkow N, Goldman S, Flamm E, Cravioto H, Wolf A, Brodie J (1983) Labeled putrescine as a probe in brain tumors. Science 221:673–675PubMedGoogle Scholar
  114. 114.
    Hiesiger E, Fowler J, Wolf A, Logan J, Brodie J, McPherson D, MacGregor R, Christman D, Volkow N, Flamm E (1987) Cerebral PET studies of human cerebral malignancy with [1–11C] putrescine and [1–11C] deoxy-D-glucose. J Nucl Med 28:1251–1261PubMedGoogle Scholar
  115. 115.
    Muhr C, Bergstrom M, Lundberg PD, Bergstrom K, Hartvig P, Lundqvist H, Antoni G, Langstrom B (1986) Dopamine receptors in pituitary adenomas: PET visualization. J Comput Assis Tomogr 10:175–180Google Scholar
  116. 116.
    Flier J, Murkier MM, Usher P, Lodish H (1987) Elevated levels of glucose transport and transporter messenger RNA are induced by ras or src oncogenes. Science 235:1492–1495PubMedGoogle Scholar
  117. 117.
    Persons D, Shek N, Hall B et al (1989) Increased expression of glycolysis-associated genes in oncogene-transformed and growth-accelerated states. Mol Carcinog 2:88–94PubMedGoogle Scholar
  118. 118.
    Delbeke D, Meyerowitz C, Lapidus R, Maciunas R, Jennings M, Moots P, Kessler R (1995) Optimum cutoff levels of F-18 fluorodeoxyglucose uptake in the differentiation of low-grade from high-grade tumors with PET. Radiology 195:45–52Google Scholar
  119. 119.
    Tyler J, Diksic M, Villemure J, Evans A, Meyer E, Yamamoto Y, Feindel W (1987) Metabolic and hemodynamic evaluation of gliomas using positron emission tomography. J Nucl Med 28:1123–1133PubMedGoogle Scholar
  120. 120.
    Ericson K, Lilja A, Bergstrom M, Collins V, Eriksson L, Ehrin E, Holst H von, Lundqvist H, Langstrom B, Mosskin M (1985) Positron emission tomography with [11C-methyl-Lmethionine, [11C]D-glucose, and [68Ga]EDTA in supratentorial tumors. J Comput Assist Tomogr 9:683–689PubMedGoogle Scholar
  121. 121.
    Di Chiro G, DeLaPaz R, Brooks R, Sokoloff L, Kornblith P, Smith B, Patronas N, Kufta C, Kessler R, Johnston G, Manning R, Wolf A (1982) Glucose utilization of cerebral gliomas measured by (18F)-fluorodeoxyglucose and positron emission tomography. Neurology 32:333–339Google Scholar
  122. 122.
    Kuwabara Y, Ichiya Y, Otsuka M et al (1988) [18F] uptake in primary cerebral lymphoma: a PET study. J Comput Assist Tomog 12:47–48Google Scholar
  123. 123.
    Rosenfeld S, Hoffman J, Coleman R, Glantz M, Hanson M, Schold S (1992) Studies of primary central nervous system lymphoma with fluorine-18-flurodeoxyglucose positron emission tomography. J Nucl Med 33:532–536PubMedGoogle Scholar
  124. 124.
    Hoffman J, Waskin H, Scifter T, Hanson M, Gray L, Rosenfeld S, Coleman R (1993) FDG-PET in differentiating lymphoma from non-malignant central nervous system lesions in patients with AIDS. J Nucl Med 34:567–575PubMedGoogle Scholar
  125. 125.
    Mosskin M, Holst H von, Bergstrom M, Collins V, Eriksson L, Johnstrom P, Noren G (1987) Positron emission tomography with 11C-methionine and computed tomography of intracranial tumors compared with histopathologic examination of multiple biopsies. Acta Radiol 1987:673–681Google Scholar
  126. 126.
    Kaschten B, Sadzot B, Del Fiore G, Peters J, Stevenaert A, Franck G, Comar D (1992) Intérêt de la tomographie à émission de positrons à l’aide de 11C-méthionine dans l’étude des tumeurs cérébrales. Circ Metab Cerveau 9:205Google Scholar
  127. 127.
    Ogawa T, Shisedo F, Kanno I, Inugami A, Fujita H, Murakami M, Shimosegawa E, Ito H, Hatazawa J, Okudera T (1993) Cerebral glioma: evaluation with methionine PET. Radiology 186:45–53PubMedGoogle Scholar
  128. 128.
    Ogawa T, Inugami A, Hatazawa J, Kanno I, Murakami M, Yasui N, Mineura K, Uemura K (1996) Clinical positron emission tomography for brain tumors: comparison of fluorodeoxyglucose F18 and L-methyl-11C-methionine. AJNR Am J Neuroradiol 17:345–353PubMedGoogle Scholar
  129. 129.
    Francavilla T, Miletich R, DeMichele D, Patronas N, Oldfield E, Weintraub B, Di Chiro G (1991) Positron emission tomog-raphy of pituitary macroadenomas: hormone production and effect of therapies. Neurosurgery 28:826–833PubMedGoogle Scholar
  130. 130.
    Griffeth L, Dehdashthi F, McGuire A, McGuire D, Perry D, Moerlein S, Siegel B (1992) PET evaluation of soft-tissue masses with fluorine-18 fluoro-2-deoxy-D-glucose. Radiology 182:185–194PubMedGoogle Scholar
  131. 131.
    Di Chiro G, Hatazawa J, Katz D, Rizzoli H, De Michele D (1987) Glucose ulilization by intracranial meningiomas as an index of tumor aggressivity and probability of recurrence. Radiology 164:521–526PubMedGoogle Scholar
  132. 132.
    Glantz M, Hoffman J, Coleman R, Friedman A, Hanson M, Burger P, Herndon JI, Meisler W, Schold SJ (1991) Identification of early recurrence of primary central nervous system tumors by F-18-fluorodeoxyglucose positron emission tomography. Ann Neurol 29:347–355PubMedGoogle Scholar
  133. 133.
    Ogawa T, Uemura K, Kanno I, Shishido F, Inugami A, Yamaguchi T, Murakami M, Hirata K, Kato T, Mineura K et al (1988) Delayed radiation necrosis of brain evaluated by positron emission tomography. Tohoku J Exp Med 155:247–260PubMedGoogle Scholar
  134. 134.
    Rozental J, Levine R, Nickles R, Dobkin J (1989) Glucose uptake by gliomas after treatment. A positron emission tomographic study. Arch Neurol 46:1302–1307PubMedGoogle Scholar
  135. 135.
    Holthoff V, Herholz K, Jeske J, Heiss W (1989) In vivo metabolism of childhood posterior fossa tumors and primitive neuroectodermal tumors before and after treatment. Cancer 72:1394–1403Google Scholar
  136. 136.
    Patronas N, Di Chiro G, Brooks R, DeLaPaz R, Kornblith P, Smith B, Rizzoli H, Kessler R (1982) Work in progress: [18F]fluorodeoxyglucose and positron emission tomography in the evaluation of radiation necrosis of the brain. Radiology 144:885–889PubMedGoogle Scholar
  137. 137.
    Di Chiro G, Oldfield E, Wright D, De Michele D, Katz D, Patronas N, Doppman J, Larson S, Ito M, Kufta C (1988) Cerebral necrosis after radiotherapy and/or intra-arterial chemotherapy for brain tumors: PET and neuropathologic studies. AJR Am J Roentgenol 150:189–197PubMedGoogle Scholar
  138. 138.
    Doyle W, Budinger T, Valk P, Levin V, Gutin P (1987) Differentiation of cerebral radiation necrosis from tumor recurrence by F-18-FDG and Rb-82 positron emission tomography. J Comput Assist Tomogr 11:563–570PubMedGoogle Scholar
  139. 139.
    Valk P, Budinger T, Levin V, Silver P, Gutin P, Doyle W (1988) PET of malignant cerebral tumors after interstitial brachytherapy. Demonstration of metabolic activity and correlation with clinical outcome. J Neurosurg 69:830–838PubMedGoogle Scholar
  140. 140.
    Mogard J, Kihlstrom L, Ericson K, Karlson B, Guo W, StoneElander S (1994) Recurrent tumor vs radiation effects after glioma knife radiosurgery of intracerebral metastases: diagnosis with PET-FDG. J Comput Assist Tomogr 18:177–181PubMedGoogle Scholar
  141. 141.
    Patronas N, Di Chiro G, Kufta C, Bairamian D, Kornblith P, Simon R, Larson S (1986) Prediction of survival in glioma patients by means of PET. J Neurosurg 62:816–822Google Scholar
  142. 142.
    Levy R, Rosenbloom S, Perret L (1986) Neurologic findings in AIDS: a review of 200 cases. AJR Am J Roentgenol 147:977–983PubMedGoogle Scholar
  143. 143.
    Moskowitz L, Hensley G, Chan J (1986) The neuropathology of acquired immune deficiency syndrome. Arch Pathol Lab Med 108:977–983Google Scholar
  144. 144.
    Lipkin W, Parry G, Kiprov D, Abrams D (1984) Inflammatory neuropathy in homosexual men with lymphadenopathy. Neurology 35:1479–1483Google Scholar
  145. 145.
    Levy R, Pons V, Rosenblum M (1984) Central nervous system mass lesions in the acquired immunodeficiency syndrome (AIDS). J Neurosurg 61:9–16PubMedGoogle Scholar
  146. 146.
    Kern K, Brunetti A, Norton J, Chang A, Malawer M, Lack E, Finn R, Rosenberg S, Larson S (1988) Metabolic imaging of human extremity musculoskeletal tumors by PET. J Nucl Med 29:181–186PubMedGoogle Scholar
  147. 147.
    Adler L, Blair H, Mackley J, Williams RP, Joyce M, Leisure G, El-Kaisi N, Miraldi F (1991) Grading liposarcoma with PET using [18F]FDG. J Comput Assist Tomogr 14:960–962Google Scholar
  148. 148.
    Adler L, Blair H, Williams R, Pathria M, Mackley J, Joyce M, Al-Kaisi N, Miraldi F (1991) Noninvasive grading of musculoskeletal tumors using PET. J Nucl Med 32:1508–1512PubMedGoogle Scholar
  149. 149.
    Korkmaz M, Kim E, Wong H, Haynie T, Wong W, Tilbury R, Benjamin R (1993) FDG and methionine PET in differentiation of recurrent or residual musculoskeletal sarcomas from post-therapy changes. J Nucl Med 34:33PGoogle Scholar
  150. 150.
    Nieweg O (1994) Positron emission tomography with fluorine-18-deoxyglucose for the evaluation of therapeutic isolated regional limb perfusion in a patient with soft-tissue sarcoma. J Nucl Med 35:90–94PubMedGoogle Scholar
  151. 151.
    Davis J, Maisey M, Chevretton E (1998) Positron emission tomography-a useful imaging technique for otolaryngology, head and neck surgery? J Laryngol Otol 112:125–127PubMedGoogle Scholar
  152. 152.
    Lowe VS, Dunphy FR, Varvares M, Kim H, Wittry M, Dunphy CH, Dunleavy T, McDonough E, Minster J, Fletcher JW, Boyd JH (1997) Evaluation of chemotherapy response in patients with advanced head and neck cancer using [F-18] fluorodeoxyglucose positron emission tomography. Head Neck 19:666–674PubMedGoogle Scholar
  153. 153.
    Anzai Y, Carroll W, Quint D, Bradford C, Minoshima S, Wolf G, Wahl R (1996) Recurrence of head and neck cancer after surgery or radiation: prospective comparison of 2-deoxy2-[F18]fluorodeoxy glucose PET and MR imaging diagnoses. Radiology 200:135–141PubMedGoogle Scholar
  154. 154.
    Paul R (1987) Comparison of fluorine-18 2-fluorodeoxyglucose and gallium-67 citrate imaging for detection of lymphoma. J Nucl Med 28:288–292PubMedGoogle Scholar
  155. 155.
    Okada J, Yoshikawa K, Imazeki K, Minoshima S, Uno K, Itami J, Kuyama J, Maruno H, Arimizu N (1992) The use of PET-FDG in the detection and management of malignant lymphoma: correlation of uptake with prognosis. J Nucl Med 32:686–691Google Scholar
  156. 156.
    Moog F, Bangerter M, Diederichs C, Guhlmann A, Merkle E, Frickhofen N, Reske S (1998) Extranodal malignant lymphoma: detection with FDG PET versus CT. Radiology 206:475–481PubMedGoogle Scholar
  157. 157.
    Okada J, Yoshikawa K, Itami M, Imaseki K, Uno K, Itami K, Kuyama J, Mikata A, Arimizu N (1992) Positron emission tomography using fluorine-18-fluorodeoxyglucose in malignant lymphoma: a comparison with proliferative activity. J Nucl Med 33:325–329PubMedGoogle Scholar
  158. 158.
    Leskinen-Kallio S, Ruotsalainen U, Nagren K, Teras M, Joensuu H (1992) Uptake of carbon-11-methionine and fluorodeoxyglucose in non-Hodgkin’s lymphoma: a PET study. J Nucl Med 32:1211–1218Google Scholar
  159. 159.
    Hoekstra O, Ossenkoeppele G, Golding R, vanLingen A, Visser G, Teule G, Huijgens P (1993) Early treatment response in malignant lymphoma, as determined by planar fluorine-18fluorodeoxyglucose scintigraphy. J Nucl Med 344:1706–1710Google Scholar
  160. 160.
    Newman Js, Francis IR, Kaminski MS, Wahl RL (1994) Imaging of lymphoma with PET with 2-[18F]-fluoro-2-deoxy-Dglucose: correlation with CT. Radiology 190:1155–1160Google Scholar
  161. 161.
    Schonberger J, Kocher F, Glatz S, Bangerter M, Frickhofen N, Heimpel H, Reske S (1995) Whole-body 18F-FDG-PET for staging and therapy-control of malignant lymphomas. J Nucl Med 36:244PGoogle Scholar
  162. 162.
    Dietlein M, Scheidhauer K, Voth E, Thiessen P, Schicha H (1998) Follow-up of differentiated thyroid cancer: what is the value of FDG and sestamibi in the diagnostic algorithm? Nuklearmedizin 37:12–17PubMedGoogle Scholar
  163. 163.
    Seabold J, Lawson M, Bishop H, Gurll N, Gupta N, Kirchner P (1998) Clinical utility of F-18 FDG PET scans in thyroid cancer patients with neg total body I-131 scans. J Nucl Med 39 [Suppl]:123PGoogle Scholar
  164. 164.
    Joensuu H, Ahonen A (1987) Imaging of thyroid metastases with fluorine-18 flourodeoxyglucose. J Nucl Med 28:910–914PubMedGoogle Scholar
  165. 165.
    Joensuu H, Ahonen A, Klemi P (1988) 18-FFluorodeoxyglucose imaging in preoperative diagnosis of thyroid malignancy. Eur J Nucl Med 13:502–506PubMedGoogle Scholar
  166. 166.
    Bland W, Khonsary S, Brown C, Mandelkern M, Ropchan J, Farahi J, Quinones N, Ribe J, Coyle J (1993) Thyroid cancer imaging with PET FDG. J Nucl Med 34:12PGoogle Scholar
  167. 167.
    Sisson J, Ackermann R, Meyer M, Wahl R (1993) Uptake of 118F]-fluoro-2-deoxy-D-glucose by thyroid cancer: implications for diagnosis and therapy. J Clin Endocrinol Metab 77:1090–1094PubMedGoogle Scholar
  168. 168.
    Conti P, Wdowozyk J, Grafton S, Bacqui F, Singer P, Nickoloff J (1994) Improved detection of locally recurrent and metastatic thyroid cancer in patients with persistently elevated thyroglobulin using FDG PET scanning. Eur J Nucl Med 21:S10Google Scholar
  169. 169.
    Fridich L, Messa C, Landoni C, Moncayo R, Kendler D, Lucignani G, Riccabona G, Fazio F (1944) PET/[18F]FDG and I-131 in patients with thyroid carcinoma. Eur J Nucl Med 21:780PGoogle Scholar
  170. 170.
    Uchida Y, Matsuno N, Minoshima S, Imazeki K, Uno K, Kitahara H (1995) Diagnostic value of 18F-FDG PET in primary and metastatic thyroid cancer. J Nucl Med 36:196PGoogle Scholar
  171. 171.
    Easton F, Coates D, McKusick A, Borchert R, Zuger J (1995) Concurrent FDG [18] imaging in I-131 therapy. J Nucl Med 36:197PGoogle Scholar
  172. 172.
    Lawson M, Duick D, Bandy D, Chen K, Koleske S, Palant A (1995) Comparison of [18F]FDG and T1–201 for detection of recurrent metastatic differentiated thyroid cancers. J Nucl Med 36:197PGoogle Scholar
  173. 173.
    Hanke J, Feine U, Litzenmayor R, Wohrle H, MullerSchauenburg W (1995) Whole-body 18-F-fluorodeoxyglucose PET in 24 patients with differentiated thyroid cancer-flip-flop behavior in uptake patterns of FDG and 131-I. Eur J Nucl Med 23:769PGoogle Scholar
  174. 174.
    Jacobs I, Bast RJ (1989) The CA-125 tumor-associated antigen: a review of the literature. Hum Reprod 4:1–12PubMedGoogle Scholar
  175. 175.
    Einhorn N, Bast R, Knapp R, Tjerndberg B, Zurawski V (1986) Preoperative evaluation of serum CA 125 levels in patients with primary epithelial ovarian cancer. Obstet Gynecol 67:414–416PubMedGoogle Scholar
  176. 176.
    Hubner K, McDonald T, Niethammer J, Smith G, Gould H, Buoncore E (1993) Assessment of primary and metastatic ovarian cancer by positron emission tomography (PET) using 2-[18F]FDG. Gynecol Oncol 51:197–204PubMedGoogle Scholar
  177. 177.
    Hubner K, Smith G, Hunter K, Stephens T, Gould H, McDonald T, Buonocore E (1994) Assessment of primary and recurrent cancer of the ovary using F-18-FDG PET. 6th Annual Meeting of the Institute for Clinical PET. Washington, DCGoogle Scholar
  178. 178.
    Burg M van der, Lent M van, Buyse M, Kobierska A, Colombo N, Favilli G, Lacave A, Nardi M, Renard J, Pecorelli S (1995) The effect of debulking surgery after induction chemotherapy on the prognosis in advanced epithelial ovarian carcinoma. N Engl J Med 332:629–634Google Scholar
  179. 179.
    Muderspach L, Muggia F, Conti PS C (1996) Second-look for stage III epithelial ovarian cancer: rationale and current issues. Cancer Treat Rev 21:499–511PubMedGoogle Scholar
  180. 180.
    Greitz T, Ingbar D, Widen L (1984) The metabolism of the human brain studied with positron emission tomography. Raven Press, New YorkGoogle Scholar
  181. 181.
    Wahl RL, Quint LE, Greenough RL, Meyer CR, White RI, Orringer MB (1994) Staging of mediastinal non-small cell lung cancer with FDG PET, CT, and fusion images: preliminary prospective evaluation. Radiology 191:371–377PubMedGoogle Scholar
  182. 182.
    Sasaki M, Ichiya Y, Kuwabara Y, Akashi Y, Yoshida T, Fukumura T, Murayama S, Ishida T, Sujio K, Masuda K (1996) The usefulness of FDG positron emission tomography for the detection of mediastinal lymph node metastases in patients with non-small cell lung cancer: comparative study with X-ray computed tomography. Eur J Nucl Med 23:741–747PubMedGoogle Scholar
  183. 183.
    Sazon DA, Santiago SM, Soo Hoo GW, Khonsary A, Brown C, Mandelkern M, Bland W, Williams AJ (1996) Fluorodeoxyglucose-positron emission tomography in the detection and staging of lung cancer. Am J Respir Grit Care Med 153:417–421Google Scholar
  184. 184.
    Scott WJ, Gobar LS, Terry JD, Dewan NA, Sunderland JJ (1996) Mediastinal lymph node staging of non-small-cell lung cancer: a prospective comparison of computed tomography and positron emission tomography. J Thorac Cardiovasc Surg 111:642–648PubMedGoogle Scholar
  185. 185.
    Valk PE, Pounds TR, Hopkins DM et al (1995) Staging nonsmall-cell lung cancer by whole-body positron emission tomographic imaging. Ann Thorac Surg 60:1573–1582PubMedGoogle Scholar
  186. 186.
    Hagberg RC, Segall GM, Stark P, Burdon TA, Pompili MR (1997) Characterization of pulmonary nodules and mediastinal staging of bronchogenic carcinoma with F-18 fluorode oxyglucose positron emission tomography. Eur J Cardiothorac Surg 12:92–97PubMedGoogle Scholar
  187. 187.
    Guhlmann A, Storck M, Kotzerke J, Moog F, SunderPlassmann L, Reske SN (1997) Lymph node staging in non-small cell lung cancer: evaluation by [18F]FDG positron. emission tomography (PET). Thorax 52:438–441PubMedGoogle Scholar
  188. 188.
    Schiepers C, Penninckx BM, De Vadder M, Merckx E, Mortelmans L, Bermann G, Marchai G, Filez L, Aerts R (1995) Contribution of PET in the diagnosis of recurrent colorectal cancer: comparison with conventional imaging. Eur J Surg Oncol 21:517–522PubMedGoogle Scholar
  189. 189.
    Argenyi EE, Dogan AS, Urdaneta LF, Ponto LL, Hichwa RD, Watkins GL (1995) Detection of unsuspected metastasis in a melanoma patient with positron emission tomography. Clin Nucl Med 20:744–747PubMedGoogle Scholar
  190. 190.
    Blessing C, Feine U, Geiger L, Carl M, Rassner G, Fierlbeck G (1995) Positron emission tomography and ultrasonography. A comparative retrospective study assessing the diagnostic validity in lymph node metastases of malignant melanoma. Arch Dermatol 131:1394–1398PubMedGoogle Scholar
  191. 191.
    Damian DL, Fulham MJ, Thompson E, Thompson JF (1996) Positron emission tomography in the detection and management of metastatic melanoma. Melanoma Res 6:325–329PubMedGoogle Scholar
  192. 192.
    Wagner JD, Schauwecker D, Hutchins G, Coleman JJ 3rd (1997) Initial assessment of positron emission tomography for detection of nonpalpable regional lymphatic metastases in melanoma. J Surg Oncol 64:181–189PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • W. N. Tauxe
  • P. T. Kirchner
  • D. W. Townsend
  • C. C. Meltzer

There are no affiliations available

Personalised recommendations