Skip to main content

Toxikologisches Gefährdungspotential der Platingruppenelemente Platin, Palladium und Rhodium

  • Chapter
Emissionen von Platinmetallen
  • 108 Accesses

Zusammenfassung

Eine umweltbedingte Exposition mit den Platingruppenelementen (PGE) Platin, Palladium, Rhodium liegt im Bereich sehr niedriger, chronischer Dosen. Platin, Palladium und Rhodium werden aus KFZ-Abgaskatalysatoren in metallischer oder oxidischer Form in die Umwelt freigesetzt. Der Hauptpfad der Aufnahme dürfte flir den nicht am Arbeitsplatz besonders exponierten Menschen eine Ingestion von Staub, der Spuren dieser PGE enthält, sein. Daneben kann auch die Inhalation von Staubpartikeln eine gewisse Rolle spielen. Als mögliche Folgewirkungen einer chronischen Exposition im Niedrigdosisbereich sind für die PGE vornehmlich kanzerogene und sensibilisierende Wirkungen zu diskutieren.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • ACGIH (1990) Threshold limit values for chemical substances and physical agents and biological exposure indices for 1990–1991, Cincinnatti, Ohio, American Conference of Governmental Industrial Hygienists. p 31

    Google Scholar 

  • ACGIH (1991) Rhodium and compounds. Documentation of the threshold limit values and biological exposure indices, 6th edn, pp 1337–1339

    Google Scholar 

  • Beck DJ, Fisch JE (1980) Mutagenicity of platinum coordination complexes in Salmonella typhimurium. Mutat Res 77: 45–54

    Article  CAS  Google Scholar 

  • Bedello PG, Goitre M, Roncarolo G, Bundino S, Cane D (1987) Contact dermatitis to rhodium. Contact Dermatitis 17: 111–112

    Article  CAS  Google Scholar 

  • Bonatti S, Lohman PH, Berends F (1983) Induction of micronuclei in Chinese-hamster ovary cells treated with Pt co-ordination compounds. Mutat Res 116: 149–154

    Article  CAS  Google Scholar 

  • Biinger J, Storck J, Stalder K (1996) Cyto-and genotoxic effects of coordination complexes of platinum, palladium and rhodium in vitro. Int Arch Occup Environ Health 69: 33–38

    Article  Google Scholar 

  • Casper ES, Kelsen DP, Alcock NW, Young CW (1979) Platinum concentrations in bile and plasma following rapid and 6-hour infusions of cis-dichlorodiammineplatinum(II). Cancer Treat Rep 63: 2023–2025

    CAS  Google Scholar 

  • D’Agostini RB, Lown BA, Morganti JB, Chapin E, Massaro EJ (1984) Effects on the development of offspring of female mice exposed to platinum sulfate or sodium hexachloroplatinate during pregnancy or lactation. J Toxicol Environ Health 13: 879–891

    Article  Google Scholar 

  • de la Cuadra J, Grau Massanes M (1991) Occupational contact dermatitis from rhodium and cobalt. Contact Dermatitis 25: 182–184

    Article  Google Scholar 

  • DFG (1980) Deutsche Forschungsgemeinschaft, MAK-Werte. Toxikologisch-arbeitsmedizinische Begriindungen. Platin und seine Verbindungen. VCH Verlagsgesellschaft, Weinheim

    Google Scholar 

  • DFG (1981) Deutsche Forschungsgemeinschaft, MAK-Werte. Toxikologisch-arbeitsmedizinische Begründungen. Palladium und seine Verbindungen. VCH Verlagsgesellschaft, Weinheim

    Google Scholar 

  • DFG (1997) Deutsche Forschungsgemeinschaft, MAK- und BAT-Wert-Liste. VCH Verlagsgesellschaft, Weinheim

    Google Scholar 

  • Diwan BA, Anderson LM, Rehm S, Rice JM (1993) Transplacental carcinogenicity of cisplatin: initiation of skin tumors and induction of other preneoplastic and neoplastic lesions in SENCAR mice. Cancer Res 53: 3874–3876

    CAS  Google Scholar 

  • Durbin P (1960) Metabolic characteristics within a chemical family. Health Phys 2: 225–238

    Article  CAS  Google Scholar 

  • Erck A, Sherwood E, Bear JL, Kimball AP (1976) The metabolism of rhodium(II) acetate in tumor-bearing mice. Cancer Res 36: 2404–2409

    CAS  Google Scholar 

  • Gebel T, Lantzsch H, Pleflow K, Dunkelberg H (1997) Genotoxicity of platinum and palladium compounds in human and bacterial cells. Mutat Res 389: 183–190

    Article  CAS  Google Scholar 

  • Giraldi T, Sava G, Bertoli G, Mestroni G, Zassinovich G (1977) Antitumor action of two rhodium and ruthenium complexes in comparison with cis-diammine-dichloroplatinum(II). Cancer Res 37: 2662–2666

    CAS  Google Scholar 

  • Hanigan MH, Gallagher BC, Taylor PT, Jr., Large MK (1994) Inhibition of gammaglutamyl transpeptidase activity by acivicin in vivo protects the kidney from cisplatininduced toxicity. Cancer Res 54: 5925–5929

    CAS  Google Scholar 

  • Holbrook DJ, Washington ME, Leake HB (1976) Effects of platinum and palladium salts on parameters of drug metabolism in rat liver. J Toxicol Environ Health 1: 1067–1079

    Article  CAS  Google Scholar 

  • IARC (1987) Cisplatin. Overall evaluations of carcinogenicity: an updating of IARC Monographs Volumes 1 to 42. IARC Monographs on the Evaluation of Carcinogenic risks to humans, Suppl. 7. International Agency for Research on Cancer, Lyon

    Google Scholar 

  • Kanematsu N, Hara M, Kada T (1980) Rec assay and mutagenicity studies on metal compounds. Mutat Res 77: 109–116

    Article  CAS  Google Scholar 

  • Lantzsch H, Gebel T (1997) Genotoxicity of selected metal compounds in the SOS chromotest. Mutat Res 389: 191–197

    Article  CAS  Google Scholar 

  • LaVelle JM, Krause RA (1986) Rhodium(III) complexes as genotoxic agents: photochemical effects and their implications. Mutat Res 172: 211–222

    Article  CAS  Google Scholar 

  • Lippard SJ (1987) Chemistry and molecular biology of platinum anticancer drugs. Pure Appl Chem 59: 731–742

    Article  CAS  Google Scholar 

  • Lippert B (1996) Struktur eines Cisplatin-DNA-Komplexes. Chemie in unserer Zeit 30: 49–50

    Google Scholar 

  • Mailliet P, Segal Bendirdjian E, Kozelka J, Barreau M, Baudoin B, Bissery MC, Gontier S, Laoui A, Lavelle F, Le Pecq JB, Chottard JC (1995) Asymmetrically substituted ethylenediamine platinum(II) complexes as antitumor agents: synthesis and structure-activity relationships. Anticancer Drug Des 10: 51–73

    CAS  Google Scholar 

  • Maquet JP, Theophanides T (1975) DNA-platinum interactions in vitro with trans-and cisPt(NH3)2C12. Bioinorg Chem 5: 59–66

    Article  Google Scholar 

  • Millard MM, Macquet JP, Theophanides T (1975) X-ray photoelectron spectroscopy of DNA-Pt complexes. Evidence of O6(Gua)-N7(Gua) chelation of DNA with cisdichlorodiamine platinum(II). Biochim Biophys Acta 402: 166–170

    Article  CAS  Google Scholar 

  • Moore W, Jr., Hysell D, Crocker W, Stara J (1975a) Biological fate of a single administration of 191Pt in rats following different routes of exposure. Environ Res 9: 152–158

    Article  CAS  Google Scholar 

  • Moore W, Jr., Hysell D, Hall L, Campbell K, Stara J (1975b) Preliminary studies on the toxicity and metabolism of palladium and platinum. Environ Health Perspect 10: 63–71

    Article  CAS  Google Scholar 

  • Moore W, Jr., Malanchuk M, Crocker W, Hysell D, Cohen A, Stara JF (1975c) Whole body retention in rats of different 191Pt compounds following inhalation exposure. Environ Health Perspect 12: 35–39

    CAS  Google Scholar 

  • Moulon C, Vollmer J, Weltzien HU (1995) Characterization of processing requirements and metal cross-reactivities in T cell clones from patients with allergic contact dermatitis to nickel. Eur J Immunol 25: 3308–3315

    Article  CAS  Google Scholar 

  • Pinto AL, Lippard SJ (1985) Binding of the antitumor drug cis-diammine-dichloroplatinum(II) (cisplatin) to DNA. Biochem Biophys Acta 780: 167–180

    CAS  Google Scholar 

  • Reibscheid EM, Zyngier S, Maria DA, Mistrone RJ, Sinisterra RD, Couto LG, Najjar R (1994) Antitumor effects of rhodium(II) complexes on mice bearing Ehrlich tumors. Braz J Med Biol Res 27: 91–94

    CAS  Google Scholar 

  • Roshchin AV, Veselov VG, Panova AI (1984) Industrial toxicology of metals of the platinum group. J Hyg Epidemiol Microbiol Immunol 28: 17–24

    CAS  Google Scholar 

  • TA Luft (1986) Erste allgemeine Verwaltungsvorschrift zum Bundes-ImmisionsschutzGesetz vom 27.02.1986. GMBI.: 95–144

    Google Scholar 

  • Safirstein R, Daye M, Guttenplan JB (1983) Mutagenic activity and identification of excreted platinum in human and rat urine and rat plasma after administration of cisplatin. Cancer Lett 18: 329–338

    Article  CAS  Google Scholar 

  • Sava G, Giraldi T, Mestroni G, Zassinovich G (1983) Antitumor effects of rhodium(I), iridium(I), and ruthenium(II) complexes in comparison with cis-dichlorodiammino platinum(II) in mice bearing Lweis lung carcinoma. Chem Biol Interact 45: 1–6

    Article  CAS  Google Scholar 

  • Schroeder HA, Mitchener M (1971) Scandium, chromium(VI), gallium, yttrium, rhodium, palladium, indium in mice: effects on gromth and life span. J Nutr 101: 1431–1438

    CAS  Google Scholar 

  • Takahara PM, Rosenzweig AC, Frederick CA, Lippard SJ (1995) Crystal structure of double-stranded DNA containing the major adduct of the anticancer drug cisplatin Nature 377: 649–652

    Article  CAS  Google Scholar 

  • Tothill P, Klys HS, Matheson LM, McKay K, Smyth JF (1992) The long-term retention of platinum in human tissues following the administration of cisplatin or carboplatin for cancer chemotherapy. Eur J Cancer 28a: 1358–1361

    Article  CAS  Google Scholar 

  • Uno Y, Morita M (1993) Mutagenic activity of some platinum and palladium complexes. Mutat Res 298: 269–275

    Article  CAS  Google Scholar 

  • US EPA (1985) Rhodium trichloride. In: US EPA Chemical Profiles, Washington DC

    Google Scholar 

  • van der Veer JL, Peters AR, Reedijk J (1986) Reaction products from platinum(IV)amine compounds and 5’-GMP are mainly bis(5’-GMP)platinum(II)amine adducts. J Inorg Biochem 26: 137–142

    Article  Google Scholar 

  • Warren G, Abbott E, Schultz P, Bennett K, Rogers S (1981) Mutagenicity of a series of hexacoordinate rhodium(III) compounds. Mutat Res 88: 165–173

    Article  CAS  Google Scholar 

  • WHO (1991) Environmental Health Criteria - International programme on chemical safety. Platinum, vol 125, Geneva

    Google Scholar 

  • Wiesmüller GA, Henne A, Leng G (1995) Metalle/Palladium. In: Wichmann HE, Schlipköter HW, Fülgraff G (Hrsg) Handbuch der Umweltmedizin, Kap VI-3, ecomed, Landsberg

    Google Scholar 

  • Zinke T (1992) Palladium-Basis-Legierungen. Bundesgesundheitsblatt 11/92: 579–581

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gebel, T. (1999). Toxikologisches Gefährdungspotential der Platingruppenelemente Platin, Palladium und Rhodium. In: Zereini, F., Alt, F. (eds) Emissionen von Platinmetallen. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58611-8_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58611-8_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63665-3

  • Online ISBN: 978-3-642-58611-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics