Skip to main content

The potentials of sub-mesophilic and/or psychrophilic anaerobic treatment of low strength wastewaters

  • Chapter
Biotechnological Applications of Cold-Adapted Organisms

Abstract

Particularly under moderate climate conditions many low and medium strength wastewaters are discharged at lower ambient temperatures, including domestic wastewater and a large variety of industrial wastewaters, e.g. those of bottling, malting, brewery and soft drinks manufacturing. The chemical oxygen demand (COD) concentrations of these wastewaters frequently are lower than 1,500 mg COD dm-3 and frequently they contain dissolved oxygen concentration of up to 5 mg O2 dm-3. The established sanitary wastewater engineering world has so far considered anaerobic wastewater treatment (AnWT) of cold and very low strength wastewaters as unfeasible. Although this opinion may be based mainly on prejudice and a serious lack of sound insight into the anaerobic digestion process and technology, in fact it restrained scientists in the past to start research in this field.

Corresponding author

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lettinga G, Hulshoff Pol LW. UASB-process design for various types of wastewaters. Wat Sci Technol 1991; 24:87–107.

    CAS  Google Scholar 

  2. Lettinga G. Anaerobic digestion and wastewater treatment systems. Antonie van Leeuwenhoek. 1995; 67:3–28.

    Article  CAS  Google Scholar 

  3. Iza J, Colleran E, Paris JM, Wu WM. International Workshop on anaerobic treatment technology for municipal and industrial wastewaters: summary paper. Water Sci Technol 1991; 24:1–16.

    Google Scholar 

  4. McCarty PL One hundred years of anaerobic treatment In: Hughes DE, Stafford DA, Wheatly BI, Baader W, Lettinga G, Nyns EJ, Verstraete W, eds. Anaerobic Digestion 1981. Amsterdam. Elsevier, 1982:3–22.

    Google Scholar 

  5. de Man AWA, van der Last ARM, Lettinga G. The use of EGSB and UASB anaerobic systems for low strength soluble and complex wastewaters at temperatures ranging from 8 to 30°C. In: Hall ER, Hobson PN, eds. Proceedings of the Fifth International Symposium on Anaerobic Digestion. Bologna, Italy, 1988:197–209.

    Google Scholar 

  6. Lin CY, Noike T, Sato K, Matsumoto J. Temperature characteristics of the methanogenesis process in anaerobic digestion. Water Sci Technol, 1987; 19:299–310.

    CAS  Google Scholar 

  7. Jewell WJ, Morris JW. Influence of varying temperature, flow rate and substrate concentration on the anaerobic attached film expanded bed process. In: Proceedings of the 36th Industrial Waste Conference. Purdue University, 1981:1–24.

    Google Scholar 

  8. Switzenbaum MS, Jewell WJ. Anaerobic attached film expanded bed reactor treatment of dilute organics. In: Proceedings of the 51st Annual WPCF Conference. Anaheim, California, 1978:1–164.

    Google Scholar 

  9. Mills PJ. Minimisation of energy input requirements of an anaerobic digestor. Agric Wastes 1979; 1:57–66.

    Article  Google Scholar 

  10. Frankin RJ, Koevoets AA, van Gils WMA, van der Pas A. Application of the BIOBED upflow fluidized bed process for anaerobic waste water treatment. Water Sci Technol 1992; 25:373–382.

    Google Scholar 

  11. Rinzema A, van Veen H, Lettinga G. Anaerobic digestion of triglyceride emulsions in expanded granular sludge bed upflow reactors with modified sludge separators. Environ Technol 1993; 14:423–432.

    Article  CAS  Google Scholar 

  12. Kato TM, Field JA, Versteeg P, Lettinga G. Feasibility of expanded granular sludge bed reactors for the anaerobic treatment of low strength soluble wastewaters. Biotechnol Bioengin 1994; 44:469–479.

    Article  CAS  Google Scholar 

  13. Koster IW, Lettinga G. Application of the upflow anaerobic sludge bed (UASB) process for treatment of complex wastewaters at low temperatures. Biotechnol Bioengin 1985; 27:1411–1417.

    Article  CAS  Google Scholar 

  14. Weber H, Kulbe K D, Chmiel H, Trösch W. Microbial acetate conversion to methane: kinetics, yields and pathways in a two-step digestion process. Appl Microbiol Biotechnol 1984; 19:224–228.

    Article  CAS  Google Scholar 

  15. Cohen A, Breure AM, Van Andel JG, Van Deursen A. Significance of partial pre-acidification of glucose for methanogenesis in an anaerobic digestion process. Appl Microbiol Biotechnol 1985; 21:404–408.

    Article  CAS  Google Scholar 

  16. Dinopoulou G, Lester JN. Optimization of a two-phase anaerobic digestion system treating a complex wastewater. Environ Technol Lett 1989; 10:799–814.

    Article  CAS  Google Scholar 

  17. Komatsu T, Hanaki K, Matsuo T. Prevention of lipid inhibition in anaerobic processes by introducing a two-phase system. Water Sci Technol 1991; 23:1189–1200.

    CAS  Google Scholar 

  18. Wiegant WM, Hennik M, Lettinga G. Separation of the propionate degradation to improve the efficiency of thermophilic anaerobic treatment of acidified wastewaters. Water Res 1986; 20:517–524.

    Article  CAS  Google Scholar 

  19. Lier van JB, Boersma F, Debets MMWH, Lettinga G. High-rate thermophflic anaerobic wastewater treatment in compartmentalized upflow reactors. Water Sci Technol 1994; 30:251–261.

    Google Scholar 

  20. Lier van JB, Rebac S, Lens P, Bijnen van F, Oude Elferink SJWH, Stams AJM, Lettinga G. Anaerobic treatment of partly acidified wastewater in a two-stage expanded granular sludge bed (EGSB) system at 8°C. Water Sci Technol 1997; 36:317–324.

    Google Scholar 

  21. Rebac S, Ruskova J, Gerbens S, van Lier JB, Stams AJM, Lettinga G. High-rate anaerobic treatment of wastewater under psychrophilic conditions. J Ferment Bioengin 1995; 5:15–22.

    Google Scholar 

  22. Rebac S, van Lier JB, Janssen MGJ, Dekkers F, Swinkels KTM, Lettinga G. High-rate anaerobic treatment of malting waste water in a pilot-scale EGSB system under psychrophilic conditions. J Chem Technol Biotechnol 1997; 68:135–146.

    Article  CAS  Google Scholar 

  23. Stams AJM. Metabolic interactions between anaerobic bacteria in methanogenic environments. Antonie van Leeuwenhoek 1994; 66:271–294.

    Article  CAS  Google Scholar 

  24. Matsushige K, Inamori Y, Mizuochi M, Hosomi M, Sudo R. The effects of temperature on anaerobic filter treatment for low-strength organic wastewater. Environ Technol 1990; 11:899–910.

    Article  CAS  Google Scholar 

  25. Last van der ARM, Lettinga G. Anaerobic treatment of domestic sewage under moderate climatic (Dutch) conditions using upflow reactors at increased superficial velocities. Water Sci Technol 1992; 25:167–178.

    Google Scholar 

  26. Grant S, Lin KC. Effects of temperature and organic loading on the performance of upflow anaerobic sludge blanket reactors. Can J Civ Engin 1995; 22:143–149.

    Article  Google Scholar 

  27. Banik GC, Dague RR. ASBR treatment of dilute wastewater at psychrophilic temperatures. In: Proceedings of 69th Annual Water Environmental Conference. Dallas, Texas, USA, 1996:235–246.

    Google Scholar 

  28. Rebac S, Gerbens S, Lens P, van Lier JB, Stams AJM, Lettinga G Kinetics of fatty acid degra-dation by psychrophilically cultivated anaerobic granular sludge. Bioresource Technol 1998 (in press).

    Google Scholar 

  29. Alphenaar A. Anaerobic granular sludge: characterization, and factors affecting its functioning. PhD Thesis, Agricultural University Wageningen, The Netherlands, 1994:93–112.

    Google Scholar 

  30. Lier van JB, Groeneveld N, Lettinga G Development of thermophilic methanogenic sludge in compartmentalized upflow reactors. Biotechnol Bioengin 1996; 50:115–124.

    Article  Google Scholar 

  31. Rebac S, van Lier JB, Lens P, van Cappellen J, Vermeulen M, Stams AJM, Dekkers F, Swinkels KTM, Lettinga G. Psychrophilic (6°C15°C) high-rate anaerobic treatment of malting wastewater in a two module EGSB system. Biotechnol Prog 1998:14 (in press).

    Google Scholar 

  32. Jetten MSM, Stams AJM, Zehnder AJB. Methanogenesis from acetate: A comparison of the metabolism in Methanothrox soehngenii and Methanosarcina spp. FEMS Microbiol Rev 1992; 88:181–198.

    Article  CAS  Google Scholar 

  33. Zeeman G, Sanders WTM, Wang KY, Lettinga G. Anaerobic treatment of complex wastewater and waste activated sludge. In: Proceedings of the Conference on Advanced Wastewater Treatment. Amsterdam, The Netherlands, 1996:225–232.

    Google Scholar 

  34. Shen CF, Guiot SR. Long-term impact of dissolved O2 on the activity of anaerobic granules. Biotechnol Bioengin 1996; 49:611–620.

    Article  CAS  Google Scholar 

  35. Kato MT, Field JA, Lettinga G. Methanogenesis in granular sludge exposed to oxygen. FEMS Microbiol Lett 1993; 11:317–324.

    Article  Google Scholar 

  36. Gerritse J, Gottschal JC. Oxic and anoxic growth of a new Citrobacter species on amino acids. Arch Microbiol 1993; 160:51–61.

    CAS  Google Scholar 

  37. Pereboom JHF. Methanogenic granule development in full scale internal circulation reactors. Water Sci Technol 1994; 30:211–221.

    CAS  Google Scholar 

  38. Stadlbauer EA, Oey LN, Weber B, Jansen K, Weidle R, Löhr H, Ohme W, Doll G. Anaerobic purification of brewery wastewater in biofilm reactors with and without a methanation cascade. Water Sci Technol 1994; 30:395–404

    CAS  Google Scholar 

  39. Péres M, Romero LI, Sales D. Thermophilic anaerobic degradation of distillery wastewater in continuous-flow fluidized bed bioreactors. Biotechnol Prog 1997; 13:33–38

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lettinga, G., Rebac, S., van Lier, J., Zeman, G. (1999). The potentials of sub-mesophilic and/or psychrophilic anaerobic treatment of low strength wastewaters. In: Margesin, R., Schinner, F. (eds) Biotechnological Applications of Cold-Adapted Organisms. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58607-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58607-1_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63663-9

  • Online ISBN: 978-3-642-58607-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics