Direct Numerical Simulations of Turbulent Boundary Layers on High Performance Computers

  • Michael Manhart
Conference paper


Direct Numerical Simulations (DNS) of turbulent zero pressure gradient boundary layers have been performed on two high performance computers with different architectures. The one, a Cray T3E-900, is a massively parallel computer (HLRS computing center, Stuttgart/Germany). The other, a Fujitsu VPP700, is a Vector-parallel computer (Leibniz Computing Center, Munich/Germany). Both computers are well suited for large-scale flow computations. For the first time a DNS with a locally refined grid near the wall has been applied for spatially developing flows. This approach leads to considerable savings of computational time compared to a full grid simulation.


Large Eddy Simulation Direct Numerical Simulation Turbulent Boundary Layer Coarse Grid Fine Grid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.A. Domaradzki, W. Liu, C. Härtel, and L. Kleiser. Energy transfer in numerically simulated wall-bounded turbulent flows. Phys. Fluids A, 6(4):1583–1599, April 1994.MATHCrossRefGoogle Scholar
  2. 2.
    C.W. Hirt, B.D. Nichols, and N.C. Romero. Sola — a numerical solution algorithm for transient fluid flows. In Los Alamos Sci. Lab., Los Alamos, 1975.Google Scholar
  3. 3.
    C.J. Jiménez-Härtel. Analyse und Modellierung der Feinstruktur im wandnahen Bereich turbulenter Scherströmungen. PhD thesis, Technische Universität München, DLR-Forschungsbericht 94–22, München, 1994.Google Scholar
  4. 4.
    A.G. Kravchenko, P. Moin, and R. Moser. Zonal embedded grids for numerical simulations of wall-bounded turbulent flows. J. Comp. Phys., 127:412–423, 1996.MATHCrossRefGoogle Scholar
  5. 5.
    T.S. Lund, X. Wu, and K.D. Squires. On the generation of turbulent inflow conditions for boundary layer simulations. In Annual Research Briefs - 1996, pages 281–295. Center for turbulence research, Stanford, 1996.Google Scholar
  6. 6.
    M. Manhart. Zonal direct numerical simulation of turbulent plane channel flow. In R. Friedrich and P. Bontoux, editors, Computation and visualization of three-dimensional vortical and turbulent flows. Proceedings of the Fifth CNRS/DFG Workshop on Numerical Flow Simulation, volume 64 of Notes on Numerical Fluid Mechanics. Vieweg Verlag, 1998.Google Scholar
  7. 7.
    M. Manhart and H. Wengle. Large-eddy simulation of turbulent boundary layer flow over a hemisphere. In Voke P.R., L. Kleiser, and J-P. Chollet, editors, Direct and Large-Eddy Simulation I, pages 299–310, Dordrecht, March 27–30 1994. ERCOFTAC, Kluwer Academic Publishers.CrossRefGoogle Scholar
  8. 8.
    P.R. Spalart. Direct simulation of a turbulent boundary layer up to R θ = 1410. J. Fluid Mech., 187:61–98, 1988.MATHCrossRefGoogle Scholar
  9. 9.
    P.P. Sullivan, J.C. McWilliams, and C.-H. Moeng. A grid nesting method for large-eddy simulation of planetary boundary-layer flows. Boundary-Layer Meteorology, 80:167–202, 1996.CrossRefGoogle Scholar
  10. 10.
    H. Werner and H. Wengle. Large-eddy simulation of turbulent flow over a square rib in a channel. In H.H. Fernholz and H.E. Fiedler, editors, Advances in Turbulence, volume 2, pages 418–423. Springer-Verlag, Berlin, 1989.CrossRefGoogle Scholar
  11. 11.
    H. Werner and H. Wengle. Large-eddy simulation of turbulent flow over and around a cube in a plate channel. In F. Durst et al., editors, Turbulent Shear Flows 8, Berlin, 1993. Springer.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Michael Manhart
    • 1
  1. 1.Technische UniversitätMünchenGermany

Personalised recommendations