Skip to main content

Physiologische Glukoseregulation

  • Chapter
Kompendium Diabetologie
  • 57 Accesses

Zusammenfassung

Die Regulation des Energiestoffwechsels ist ein komplexes Wechselspiel zwischen Hormonen, exogenen Nährstoffen und dem Austausch von Substraten mit dem Ziel, eine konstante und ausreichende Versorgung aller Organe des Körpers sicherzustellen. Insulin steuert sowohl in der Resorptions- wie der Postresorptionsphase als Schlüsselhormon den Austausch und die Verteilung von Substraten. Glukagon, Kortisol, Katecholamine und das Wachstumshormon spielen eine wesentliche Rülle fur den Energiestoffwechsel in Zeiten eines akuten Glukosebedarfs, wie er bei Arbeitsbelastung, im Streß oder als Reaktion auf eine Hypoglykämie vorkommt. Wichtigste Organe für die Aufrechterhaltung der Energiehomöostase sind die Leber und die Niere auf Grund ihrer besonderen Fähigkeit, Glukose zu produzieren; das Gehirn, da es von Glukose als seinem wesentlichen Energiesubstrat abhängig ist; die Muskulatur und das Fettgewebe auf Grund ihrer Fähigkeit, auf Insulin zu reagieren und Glukose in Form von Glykogen und Fett zu speichern (s. Shulmann et al. 1997; Tungermann u. Möhler 1980).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Ashcroft SJ, Ashcroft FM (1990) Properties amd functions of ATP-sensitive K-channels. Cell Signal 2: 197–214.

    Article  PubMed  CAS  Google Scholar 

  • Ashcroft SJH (1990) Glucoreceptor mechanisms and the control of insulin release and biosynthesis. Diabetologia 18: 5.

    Article  Google Scholar 

  • Bliss M T (1982) The discovery of insulin. The University of Chicago Press, Chicago.

    Google Scholar 

  • Boyle WJ, Smeal T, Defize LH et al. (1991) Activation of protein kinase C decreases phosphorylation of c-jun sites that negatively regulate its DNA-binding activity. Cell 64: 573.

    Article  PubMed  CAS  Google Scholar 

  • Chan SJ, Keim P, Steiner DF (1976) Cell-free synthesis of rat preproinsulins: characterization and partial amino acid sequence determination. Proc Natl Acad Sci USA 73: 1964.

    Article  PubMed  CAS  Google Scholar 

  • Clark AR, Docherty K. (1992) The insulin gene. In: Ashcroft FM, Ashcroft SJ (eds) Insulin, Molecular Biology to Pathology. Oxford University Press, Oxford.

    Google Scholar 

  • Conlon JM, Samson WK, Dobbs RE et al. (1979) Glukagon like polypeptides in canine brain. Diabetes 28: 700–702.

    Article  PubMed  CAS  Google Scholar 

  • Cook DL, Hales CN (1984) Intracellular ATP directly blocks K+ channels in pancreatic B-cells. Nature 311: 271–273.

    Article  PubMed  CAS  Google Scholar 

  • Cook DL, Satin LS, Ashford ML et al. (1988) ATP-sensitive K+ channels in pancreatic B-cells: sphare channel hypothesis. Diabetes 37: 495–498.

    Article  PubMed  CAS  Google Scholar 

  • Cook DL, Taborsky GJ (1997) B-cell function and insulin secretion. In: Porte D, Sherwin RS (eds) Ellenberg & Rifkin’s Diabetes mellitus. Appleton & Lange, Stamford, 5th ed. pp 49–73.

    Google Scholar 

  • DeFronzo RA (1988) Lilly lecture 1987. The triumvirate: Beta-cell, muscle, liver: a collision responsible for NIDDM. Diabetes 37: 667–687.

    PubMed  CAS  Google Scholar 

  • Dent P, Lavoinne A, Narkielny S et al. (1990) The molecular mechanism by which insulin stimulates glycogen synthesis in mammalian skeletal muscle. Nature 348: 302.

    Article  PubMed  CAS  Google Scholar 

  • Docherty K, Steiner DF (1997) Molecular and cellular biology of the beta-cell. In: Porte D, Sherwin RS (eds) Ellenberg & Rifkin’s Diabetes mellitus. Appleton & Lange, Stamford, 5th ed pp 29–48.

    Google Scholar 

  • Fingar DC, Birnbaum MJ (1994) Characterization of the mitogen-activated protein kinase / 90 kilodalton ribosomal protein S6 kinase signaling pathway in 3T3-L1 adipocytes and its role in insulin stimulated glucose transport. Endocrinology 134: 728.

    Article  PubMed  CAS  Google Scholar 

  • Han VK, Hynes MA, Jin C et al. (1986) Cellular localisation of proglucagon/glucagon like peptide I messenger RNA in rat brain. J Neuro Sci Res 11: 97–107.

    Article  Google Scholar 

  • Holman GD, Kasuga M (1997) From receptor to transporter: insulin signalling to glucose transport. Diabetologia 40: 991–1003.

    Article  PubMed  CAS  Google Scholar 

  • Ingebritsen TS, Stewart AA, Cohen P (1983) The protein phosphatases involved in cellular recognition. 6. Measurement of type-1 and type-2 protein phosphatases in extracts of mammalian tissues; an assessment of their physiological role. Eur J Biochem 132: 297.

    Article  PubMed  CAS  Google Scholar 

  • Jelinek LJ, Lok S, Rosenberg GB et al. (1993) Expression, cloning and signaling properties of the rat glucagon receptor. Science 259: 1614–1616.

    Article  PubMed  CAS  Google Scholar 

  • Jouneaux C, Audigier Y, Goldsmith P et al. (1993) Gs mediates hormonal inhibition of the calcium pump in the liver plasma membrane. J Biol Chem 268: 2368–2372.

    PubMed  CAS  Google Scholar 

  • Jungermann K, Möhler H (1980) Biochemie. Springer, Berlin Heidelberg New York Tokyo.

    Book  Google Scholar 

  • Kimball SR, Vary TC, Jefferson LJ (1994) Regulation of protein synthesis by insulin. Ann Rev Physiol 56: 321.

    Article  CAS  Google Scholar 

  • Klarlund JK, Cherniack AD, Conway BR, VanRenterghem B, Czech MP: Mechanisms of insulin action. In: Porte D, Sherwin RS (eds) Ellenberg & Rifkin’s Diabetes mellitus. Appleton & Lange, Stamford, 5th ed, 75–93.

    Google Scholar 

  • Lane MA (1907) The cytological characters of the areas of Langerhans. Am J Anat 7: 409–422.

    Article  Google Scholar 

  • Lefebvre PJ, Luycks AS (1979) Glucagon and diabetes: a reappraisal. Diabetologia 16: 347–354.

    Article  PubMed  CAS  Google Scholar 

  • Lomedico PT, Chan SJ, Steiner DF et al. (1977) Immunological and chemical characterization of bovine preproinsulin. J Biol Chem 252: 7971.

    PubMed  CAS  Google Scholar 

  • Philippe J, Missotten M (1990) Functional characterisation of a cAMP-responsive element of the rat insulin I gene. J Biol Chem 8: 225.

    Google Scholar 

  • Philippe J (1991) Structure and pancreatic expression of the insulin and glucagon genes. Endocrine Rev 12: 252.

    Article  CAS  Google Scholar 

  • Rasmussen H, Zawalih KC, Ganesan S et al. (1990) Physiology and pathophysiology of insulin secretion. Diabetes Care 13: 655–666.

    Article  PubMed  CAS  Google Scholar 

  • Ravazzola M, Orci L (1980) Glucagon and glicentin immunoreactivity are topologically segregated in the α-granula of the human pancreatic A cell. Nature 284: 66–67.

    Article  PubMed  CAS  Google Scholar 

  • Redpath NT, Proud CG (1994) Molecular mechanisms in the control of translation by hormones and growth factors. Biochim Biophys Acta 1220: 147.

    Article  PubMed  CAS  Google Scholar 

  • Saksela K, Makelöa TP, Hughes K et al. (1992) Activation of protein kinase C increases phosphorylation of the L-myc trans-activator domain at a GSK-3 target site. Oncogene 7: 347.

    PubMed  CAS  Google Scholar 

  • Schroeder WT, Lopez SC, Harper ME et al. (1984) Localization of the human glucagon gene (GCG) to chromosome Segment 2136-37. Cytogenet Cell Genet 38: 76–79.

    Article  PubMed  CAS  Google Scholar 

  • Shulmann GI, Barrett EJ, Sherwin RS (1997) Integrated fuel metabolism. In: Porte D, Sherwin RS (eds) Ellenberg & Rifkin’s Diabetes mellitus. Appleton & Lange, Stamford, 5th ed pp 1–17.

    Google Scholar 

  • Stein R (1993) Factors regulating insulin gene transcription. Trends Endocrinol Metab 4: 96.

    Article  PubMed  CAS  Google Scholar 

  • Taeger H, Given B, Baldwin D et al. (1979) A structurally abnormal insulin causing human diabetes. Nature 281:122.

    Article  Google Scholar 

  • Tillil H, Shapiro ET, Miller MA et al. (1988) Dose-dependent effects of oral and intravenous glucose on insulin secretion and clearance in normal humans. Am J Physiol S254,349–357.

    Google Scholar 

  • Tricolli HAV, Bell GI, Shows TB (1984) The human glucagon gene is located on chromosome 2. Diabetes 33: 200–202.

    Article  Google Scholar 

  • Ullrich A, Shine J, Chirgwin J et al. (1977) Rat insulin genes: construction of plasmids containing the coding sequences. Science 196:1313.

    Article  PubMed  CAS  Google Scholar 

  • Unger RH, Orci L: Glucagon. In: Porte D, Sherwin RS (eds) Ellenberg & Rifkin’s Diabetes mellitus.Appleton & Lange, Stamford, 5th ed pp 115-139.

    Google Scholar 

  • Walker MD (1990) Insulin gene regulation. In: Cuatrecasas P, Jacobs P (eds) Handbook of experimental pharmacology. Springer, Berlin Heidelberg New York Tokyo, pp 92–93.

    Google Scholar 

  • White MF (1997) The insulin signalling system and the IRS proteins. Diabetologia 40: S2–S17.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rösen, P. (1999). Physiologische Glukoseregulation. In: Nawroth, P.P. (eds) Kompendium Diabetologie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58588-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58588-3_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64899-4

  • Online ISBN: 978-3-642-58588-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics