Skip to main content

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 32))

  • 721 Accesses

Abstract

Current conduction, and thus the resistance of a semiconductor material and device, is determined by the ease with which the carriers can traverse through the structure. As the carriers travel through a semiconductor, they undergo a variety interactions with the host material [8.1–3]. In a perfect static crystal, carriers would be accelerated indefinitely by the applied electric field, consistent with the band structure of the crystal. However, the semiconductor crystal contains defects, intentionally added impurities, and even at very low temperatures the semiconductor is in constant motion and far from being static. As free carriers traverse through a semiconductor, they encounter various events referred to as scattering, the most effective of which are by charged impurities and/or centers, and by lattice vibrations. The former manisfests itself as deflections of free carries by the long-range Coulomb potential of the charged centers. This can be thought of as a local perturbation of the band edge, which affects the electron motion. The latter is caused by the interaction of a moving charge with lattice vibrations, contraction and dilation, and can liberally be described as follows: As the atoms moves closer to and farther away from one another, the corresponding undulations on the band edge causes scattering, as will be described in Sects. 8.1–4. An additional scattering mechanism is that due to charged dislocations which can be partially screened at high doping levels. Impurity scattering is eleastic or near eleastic, and conserves energy. However, phonon scattering is inelastic and changes the energy and momentum states. In the scattering process, energy can be gained by phonon absorption or lost by phonon emission.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.L. Rode: Low field election transport. Semiconductors and Semimetals 10, 1 (Academic, New York 1975)

    Google Scholar 

  2. D.A. Anderson, N. Apsley: The Hall effect in III-V semiconductors. Semicond. Sci. Technol. 1, 187 (1986)

    Article  CAS  Google Scholar 

  3. B.R. Nag: Electron Transport Compound Semiconductors, Springer Ser. Solid-State Sci., Vol. 11 (Springer, Berlin, Heidelberg 1980)

    Google Scholar 

  4. D.C. Look: Electrical Characterization of GaAs Materials, Devices (Wiley, New York 1989)

    Google Scholar 

  5. H. Brooks: Adv. Electron. Electron. Phys. 7, 85 (1955)

    Article  CAS  Google Scholar 

  6. B. Gelmont, B. Lund, K.-S. Kim, G.U. Jensen, M.S. Shur, T.A. Fjeldly: J. Appl. Phys. 71, 4977 (1992)

    Article  CAS  Google Scholar 

  7. B. Gelmont, M. Shur, M. Stroscio: J. Appl. Phys. 77, 657 (1995)

    Article  CAS  Google Scholar 

  8. H. Ehrenreich: J. Phys. Chem. Solids 8, 130 (1959)

    Article  CAS  Google Scholar 

  9. J.D. Wiley: Mobility of holes in semiconductors. Semiconductors and Semimetals 10, 134 (Academic, New York 1975)

    Google Scholar 

  10. C. Hammar, B. Magnusson: Phys. Scripta 6, 206 (1972)

    Article  CAS  Google Scholar 

  11. W. Shockley: Electrons, Holes in Semiconductors (Van Nostrand, Princeton, NJ 1950)

    Google Scholar 

  12. D.C. Look, D.K. Lorance, J.R. Sizelove, C.E. Stutz, K.R. Evans, D.W. Whit-son: J. Appl. Phys. 71, 260 (1992)

    Article  CAS  Google Scholar 

  13. V.W.L. Chin, B. Zhou, T.L. Tansley, X. Li: J. Appl. Phys. 77, 6064 (1995)

    Article  CAS  Google Scholar 

  14. J.C. Phillips: Rev. Mod. Phys. 42, 317 (1970)

    Article  CAS  Google Scholar 

  15. M.E. Lin, B.N. Sverdlov, S. Strite, H. Morkoç, A.E. Drakin: Electron. Lett. 29, 1759 (1993)

    Article  CAS  Google Scholar 

  16. Y.J. Wang, R. Kaplan, H.K. Ng, K. Doverspike, D.K. Gaskill, T. Ikedo, H. Amano, I. Akasaki: J. Appl. Phys. 79, 8007 (1996)

    Article  CAS  Google Scholar 

  17. D.L. Rode: Low field electron transport, in Semiconductors and Semimetals 10, 1 (Academic, New York 1975)

    Google Scholar 

  18. D.K. Schroeder: Semiconductor Material and Device Characterization (Wiley, New York 1990)

    Google Scholar 

  19. A.D. Bykhovski, V.V. Kaminski, M.S. Shur, Q.C. Chen, M.A. Khan: Appl. Phys. Lett. 68, 818 (1996)

    Article  CAS  Google Scholar 

  20. W. Shan, T. Schmidt, T.X.H. Yang, J.J. Song, B. Goldenberg: J. Appl. Phys. 79, 3691 (1996)

    Article  CAS  Google Scholar 

  21. Perlin, E. Litwin-Staszewska, B. Suchanek, W. Knap, J. Camassel, T. Suski, R. Piotrzkowski, I. Grzegory, S. Porowski, E. Kaminska, J.C. Chervin: Appl. Phys. Lett. 68, 1114 (1996)

    Article  CAS  Google Scholar 

  22. T.L. Tansley: Crystal structure, mechanical properties, thermal properties and ref-ractice index of InN, in Group III-V Nitrides, ed. by J.H. Edgar, EMIS Datarev. Series, Vol. 11(Inspec, London 1994)

    Google Scholar 

  23. V.W.L. Chin, T.L. Tansley, T. Ostockton: J. Appl. Phys. 75, 7365 (1995)

    Article  Google Scholar 

  24. T.L. Tansley, E.M. Goldys, M. Godlewski, B. Zhou, H.Y. Zuo: The contribution of defects to the electrical and optical properties of GaN, in GaN and Related Materials, ed. by S. Pearton (Gordon and Breach, Amsterdam 1997)

    Google Scholar 

  25. S.T. Strite, H. Morkoç: GaN, AlN, and InN: A review. J. Vacuum Sci. Techn. B 10, 1237–1266 (1992)

    Article  CAS  Google Scholar 

  26. S.M. Sze: Physics of Semiconductor Devices, 2nd edn. (Wiley Interscience, New York 1981)

    Google Scholar 

  27. D.C. Look, J.R. Sizelove. S. Keller, Y.F. Wu, U.K. Mishra, S.P. DenBaars: Solid State Commun. 102, 297 (1997)

    Article  CAS  Google Scholar 

  28. D.L. Rode: Phys. Status Solidi B 55, 687 (1973)

    CAS  Google Scholar 

  29. J. Kolnik, I.H. Oguzman, K.F. Brennan, R. Wang, P.P. Ruden, Y. Wang: J. Appl. Phys. 78, 1033, 1995

    Article  CAS  Google Scholar 

  30. M.A. Littlejohn, J.R. Hauser, T.H. Glisson: Appl. Phys. Lett. 26, 625–627 (1975)

    Article  CAS  Google Scholar 

  31. M.S. Shur, B. Gelmont, C. Saavedra-Munoz, G. Kelner: Proc. 5th Conf. SiC Related Materials. IoPConf. Ser. 137, 155 (IoP, Bristol 1994)

    Google Scholar 

  32. V.W.L. Chin, T.L. Tansley, T. Ostockton: J. Appl. Phys. 75, 7365 (1994)

    Article  CAS  Google Scholar 

  33. M. Ilegems, H.C. Montgomery: J. Phys. Chem. Solids 34, 885 (1973)

    Article  CAS  Google Scholar 

  34. M.A. Khan, J.N. Kuznia, J.M. Van Hove, D.T. Olson, S. Krishnakutty, R.M. Kolbas: Appl. Phys. Lett. 58, 526 (1991)

    Article  CAS  Google Scholar 

  35. I. Akasaki, H. Amano, Y. Koide, K. Hiramatsu, N. Sawaki: J. Cryst. Growth 98, 209 (1990)

    Article  Google Scholar 

  36. S. Nakamura, T. Mukhai, M. Senoh: J. Appl. Phys. 71, 5543 (1992)

    Article  CAS  Google Scholar 

  37. H. Amano, H. Amano, N. Sawaki, I. Akasaki: Appl. Phys. Lett. 48, 353 (1986)

    Article  CAS  Google Scholar 

  38. K. Hiramatsu, S. Itoh, H. Amano, I. Akasaki, N. Kuwano. T. Shiraish, K. Oki: J. Crystal Growth 115, 628 (1991)

    Article  CAS  Google Scholar 

  39. S. Nakamura, T. Mukhai, M. Senoh: J. Appl. Phys. 71, 5543–5549 (1992) S. Nakamura: Jpn J. Appl. Phys. 30, L1705-1707 (1991)

    Article  CAS  Google Scholar 

  40. D.K. Gaskill, L.B. Rowland, K. Doverspike: Electrical properties of AlN, GaN, AlGaN, in Properties of Group III Nitrides, ed. by J. H. Edgar, Inspec Ser., Vol.11 (Inst. Electr. Eng., London, UK 1994) pp. 101–116

    Google Scholar 

  41. D.L. Rode, D.K. Gaskill: Appl. Phys. Lett. 66, 1972 (1995)

    Article  CAS  Google Scholar 

  42. D.C. Look, D.C. Reynolds, J.R. Sizelove, R.L. Jones, R.J. Molnar: Phys. Rev. Lett. 79, 2273 (1997)

    Article  CAS  Google Scholar 

  43. D.C. Look, R.J. Molnar: Appl. Phys. Lett. 70, 3377 (1997)

    Article  CAS  Google Scholar 

  44. H. Morkoç, H. Ünlü, G. Ji: Fundamentals, Technology of MODFETs (Wiley, New York 1991) Vol.2

    Google Scholar 

  45. J. Redwing, M.A. Tischler, J.S. Flynn, S. Elhamri, M. Ahoujja, R.S. Newrock, W.C. Mitchel: Appl. Phys. Lett. 69, 963 (1996)

    Article  CAS  Google Scholar 

  46. T. Tanaka, A. Watanabe, H. Amano, Y. Kobayashi, I. Akasaki, S. Yamazaki, M. Koike: Appl. Phys. Lett. 65, 593 (1994)

    Article  CAS  Google Scholar 

  47. S. Yamasaki, S. Asami, N. Shibata, M. Koike, K. Manabe, T. Tanaka, H. Amano, I. Akasaki: Appl. Phys. Lett. 66, 1112–1114 (1995)

    Article  CAS  Google Scholar 

  48. S. Mohammad. A. Salvador, H. Morkoç: Proc. IEEE 83, 1306–1355 (1995)

    Article  CAS  Google Scholar 

  49. T.L. Tansley, C.P. Foley: Proc. 3rd Int’l Conf. on Semiinsulating III-V Materials (Warm Springs, OR 1984), ed. by J. S. Blakemore (Shiva, London 1985) pp. 497–500

    Google Scholar 

  50. W.R. Bryden, S.A. Ecelberger, M.E. Hawley, T.J. Kistenmacher: ECR-assisted reactive magnetron sputtering of InN, in Diamond, SiC, Nitride Wide Bandgap Semiconductors, ed. by C. H. Carter Jr., G. Gildenblat, S. Nakamura, R. J. Nema-nich (MRS, Pittsburgh, PA 1994)

    Google Scholar 

  51. T.L. Tansley, C.P. Foley: Electron. Lett. 20, 1066 (1984)

    Article  CAS  Google Scholar 

  52. M. Suzuki, T. Uenoyama: In Group III Nitride Semiconductor Compounds: Physics and Applications, ed. by B. Gil (Clarendon, Oxford 1998)

    Google Scholar 

  53. J. Edwards, K. Kawabe, G. Stevens, R.H. Tredgold: Solid State Commun. 3, 99 (1965)

    Article  CAS  Google Scholar 

  54. K. Kawabe, R.H. Tredgold. Y. Inuishi: Electr. Eng. Jpn. 87, 62 (1967)

    Google Scholar 

  55. D.C. Look, D.C. Reynolds, W. Kim, O. Aktas, A, Botchkarev, A. Salvador, H. Morkoç: J. Appl. Phys. 80, 2960–2962 (1996)

    Article  CAS  Google Scholar 

  56. W. Kim, A.E. Botchkarev, A. Salvador, G. Popovici, H. Tang, H. Morkoç: J. Appl. Phys. 82, 219 (1997)

    Article  CAS  Google Scholar 

  57. N.F. Mott, W.D. Twose: Adv. Phys. 10, 107 (1961)

    Article  CAS  Google Scholar 

  58. T. Matsubara, Y. Toyozawa: Prog. Theoret. Phys. (Kyoto) 26, 739 (1961)

    Article  CAS  Google Scholar 

  59. J.S. Im, A. Moritz, F. Steuber, V. Härle, F. Scholz, A. Hangleiter: Appl. Phys. Lett. 70, 631 (1997)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Morkoç, H. (1999). Carrier Transport. In: Nitride Semiconductors and Devices. Springer Series in Materials Science, vol 32. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58562-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58562-3_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63647-9

  • Online ISBN: 978-3-642-58562-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics